This paper presents GridNet, a new Convolutional Neural Network (CNN) architecture for semantic image segmentation (full scene labelling). Classical neural networks are implemented as one stream from the input to the output with subsampling operators applied in the stream in order to reduce the feature maps size and to increase the receptive field for the final prediction. However, for semantic image segmentation, where the task consists in providing a semantic class to each pixel of an image, feature maps reduction is harmful because it leads to a resolution loss in the output prediction. To tackle this problem, our GridNet follows a grid pattern allowing multiple interconnected streams to work at different resolutions. We show that our network generalizes many well known networks such as conv-deconv, residual or U-Net networks. GridNet is trained from scratch and achieves competitive results on the Cityscapes dataset.
The aim of this paper is to present different algorithms, based on a combination of two structures of graph and of two color image processing methods, in order to segment color images. The structures used in this study are the region adjacency graph and the line graph associated.We will see how these structures can enhance segmentation processes such as region growing or watershed transformation. The principal advantage of these structures is that they give more weight to adjacency relationships between regions than usual methods. Let us note nevertheless that this advantage leads in return to adjust more parameters than other methods to best refine the result of the segmentation.We will show that this adjustment is necessarily image dependent and observer dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.