In drug discovery one uses chemical space as a concept to organize molecules according to their structures and properties. One often would like to generate new possible molecules at a specific location in chemical space marked by a molecule of interest. Herein we report the peptide design genetic algorithm (PDGA, code available at https://github.com/reymondgroup/PeptideDesignGA), a computational tool capable of producing peptide sequences of various chain topologies (linear, cyclic/polycyclic or dendritic) in proximity of any molecule of interest in a chemical space defined by MXFP, an atom-pair fingerprint describing molecular shape and pharmacophores. We show that PDGA generates high similarity analogs of bioactive peptides, including in selected cases known active analogs, as well as of non-peptide targets. We illustrate the chemical space accessible by PDGA with an interactive 3D-map of the MXFP property space available at http://faerun.gdb.tools/. PDGA should be generally useful to generate peptides at any location in chemical space. File list (3) download file view on ChemRxiv Peptidespacev2.pdf (1.30 MiB) download file view on ChemRxiv Peptidespace_manuscript.pdf (1.30 MiB) download file view on ChemRxiv Peptidespace_SI.pdf (254.86 KiB)
In drug discovery one uses chemical space as a concept to organize molecules according to their structures and properties. One often would like to generate new possible molecules at a specific location in chemical space marked by a molecule of interest. Herein we report the peptide design genetic algorithm (PDGA, code available at https://github.com/reymondgroup/PeptideDesignGA), a computational tool capable of producing peptide sequences of various chain topologies (linear, cyclic/polycyclic or dendritic) in proximity of any molecule of interest in a chemical space defined by MXFP, an atom-pair fingerprint describing molecular shape and pharmacophores. We show that PDGA generates high similarity analogs of bioactive peptides, including in selected cases known active analogs, as well as of non-peptide targets. We illustrate the chemical space accessible by PDGA with an interactive 3D-map of the MXFP property space available at http://faerun.gdb.tools/. PDGA should be generally useful to generate peptides at any location in chemical space.
In drug discovery one uses chemical space as a concept to organize molecules according to their structures and properties. One often would like to generate new possible molecules at a specific location in chemical space marked by a molecule of interest. Herein we report the peptide design genetic algorithm (PDGA, code available at https://github.com/reymondgroup/PeptideDesignGA), a computational tool capable of producing peptide sequences of various chain topologies (linear, cyclic/polycyclic or dendritic) in proximity of any molecule of interest in a chemical space defined by MXFP, an atom-pair fingerprint describing molecular shape and pharmacophores. We show that PDGA generates high similarity analogs of bioactive peptides, including in selected cases known active analogs, as well as of non-peptide targets. We illustrate the chemical space accessible by PDGA with an interactive 3D-map of the MXFP property space available at http://faerun.gdb.tools/. PDGA should be generally useful to generate peptides at any location in chemical space.
In drug discovery one uses chemical space as a concept to organize molecules according to their structures and properties. One often would like to generate new possible molecules at a specific location in chemical space marked by a molecule of interest. Herein we report the peptide design genetic algorithm (PDGA, code available at https://github.com/reymondgroup/PeptideDesignGA), a computational tool capable of producing peptide sequences of various chain topologies (linear, cyclic/polycyclic or dendritic) in proximity of any molecule of interest in a chemical space defined by MXFP, an atom-pair fingerprint describing molecular shape and pharmacophores. We show that PDGA generates high similarity analogs of bioactive peptides, including in selected cases known active analogs, as well as of non-peptide targets. We illustrate the chemical space accessible by PDGA with an interactive 3D-map of the MXFP property space available at http://faerun.gdb.tools/. PDGA should be generally useful to generate peptides at any location in chemical space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.