Human colonic carcinoma Caco-2 cells grown in vitro undergo epithelial differentiation. Electrical measurements showed that they form resistant monolayers of polarized cells. On millipore filters, transepithelial electrical resistance (154 +/- 6.5 omega X cm2) was accompanied by a small potential difference (0.29 +/- 0.02 mV, serosal side positive) and by short-circuit current (1.9 +/- 0.14 microA X cm-2), both of which were ouabain sensitive. Micropuncture of domes formed on plastic supports under standard culture conditions revealed electrical polarity similar to that of filter-grown cells (0.8 +/- 0.2 mV, serosal side positive) combined with a highly negative cytoplasm (-57 +/- 1 mV) and very marked cell asymmetry (76% of total electrical cell resistance was located in the mucosal membrane). These parameters were not affected by the diuretic amiloride nor the hormone aldosterone, suggesting that sodium conductance is very limited in the mucosal membrane. Addition to the mucosal side of the ionophore nystatin or amphotericin B unmasked the possibility of high electrical transport activity. Electrical measurements made it possible to define the epithelial properties of Caco-2 cells, which may resemble those of colonic crypt or fetal cells. These measurements also confirmed that functional differentiation is homogeneous in Caco-2 cells. It is suggested that dome cell micropuncture may be useful in investigating the functional properties of other dome-forming cell lines.
In order to study the effect of glucose on the differentiation of cultured human colon cancer cells, a subpopulation of HT-29 cells was selected for its capacity to grow in the total absence of sugar. These cells (Glc-cells) exhibit, after confluency, an enterocytic differentiation, in contrast to cells grown with glucose (Glc+ cells), which always remain undifferentiated. The differentiation is characterized by a polarization of the cell layer with apical brush borders and tight junctions, and by the presence of sucrase-isomaltase. The differentiation of Glc- cells is reversible: the addition of glucose to postconfluent cultures of Glc- cells results in an inhibiting effect on the expression of sucrase-isomaltase; switching growing cultures of Glc- cells to the Glc+ medium for several passages results in a progressive reversion to the undifferentiated state, which is completed after seven passages. The dedifferentiation process is associated with a parallel, passage-related, increase in the rates of glucose consumption and lactic acid production, and decreases of intracellular glycogen content, which return to the values of the undifferentiated original Glc+ cells. The values of these metabolic parameters are correlated, at each passage, with the degree of dedifferentiation of the cells. When these dedifferentiated cells, after having been cultured in Glc+ medium for 20 passages, are switched back to the Glc- medium, they readily grow without mortality, and reexpress the same enterocytic differentiation as the parent Glc- cells. These results show that the capacity of this subpopulation to grow and differentiate in the absence of sugar is a stable characteristic. They further suggest that glucose metabolism interferes with the program of differentiation of HT-29 cells.
Defining the molecular mechanisms involved in cancer formation and progression is still a major challenge in colorectal-cancer research. Our strategy was to characterize genes whose expression is altered during colorectal carcinogenesis. To this end, the phenotype of a colorectal tumour was previously established by partial sequencing of a large number of its transcripts and the genes of interest were selected by differential screening on high-density filters with mRNA of colorectal cancer and normal adjacent mucosa. Fifty-one clones were found over-expressed and 23 were underexpressed in the colorectal-cancer tissues of the 5 analyzed patients. Among the latter, clones 6G2 and 32D6 were found of particular interest, since they had significant homology with several homeodomain-containing genes. The highest degree of similarity was with the murine Cdx1 for 6G2, and with the murine Cdx2 and hamster Cdx3 for 32D6. Using a RT-PCR approach, complete sequence of both types of homeobox-containing cDNA was obtained. The amino-acid sequence of the human Cdx1 is 85% identical to the mouse protein, and human Cdx2 has 94% identity with the mouse Cdx2 and hamster Cdx3. Tissue-distribution analysis of Cdx1 and Cdx2 mRNA showed that both transcripts were specifically expressed in small intestine, in colon and rectum. Colorectal cancer is the second most common tumour in men and the third in women in the Western countries. Although much is known about the epidemiology, morphology and genetics of colorectal tumorigenesis, our knowledge of the perturbations of gene expression that occur in colorectal tumours remains limited. Such tumours may arise from benign adenomatous polyps, which later progress to adenocarcinomas through several molecular events. They thus provide a very useful paradigm for studying the molecular genetic bases of cancer. The multistep process leading to colorectal tumorigenesis probably involves the loss of function of tumour-suppressor genes, as well as the activation of oncogenes. Several important genes have already been identified, but they do not account for the whole process, and other genes are probably involved.Efforts have been made to characterize these genes. Differential hybridization techniques and screening of substracted libraries allowed the elucidation of some of them (Bartsch et al., 1986;Denis et al., 1993;Yow et al., 1988;Schweinfest et al., 1993;Kondoh et al., 1992; Barnard et al., 1992a, b). We developed an alternative strategy, in which the phenotype of a colorectal tumour was established by partial sequencing of a large number of randomly selected transcripts (Frigerio et al., 1995). This repertory of ESTs should therefore contain most of the differentially expressed genes. Recently, Nguyen et al. (1995) have developed an efficient method of differential screening in which cDNA clones are gridded on high-density colony filters and hybridized with complex probes derived from poly (A) 1 RNA from different cells or tissues. The signals observed are measured, providing a ''hybridization s...
Seven clones from the Caco-2 cell line, three isolated from passage 29 (PD7, PD10, PF11) and four from passage 198 (TB10, TC7, TF3, TG6), all of them selected on the basis of differences in the levels of expression of sucrase-isomaltase and rates of glucose consumption, were analysed for the expression of hexose-transporter mRNAs (SGLT1, GLUT1-GLUT5) in relation to the phases of cell growth and the associated variations of the rates of glucose consumption. All clones showed a similar pattern of evolution of the rates of glucose consumption, which decreased from the exponential to the late-stationary phase, but differed, in a 1-40-fold range, in the values observed at late postconfluency. According to these values, clones could be divided into high- (PD10, PF11) and low-glucose-consuming cells (PD7, TB10, TC7, TF3 and TG6). GLUT1 and GLUT3 mRNAs were expressed in all clones and showed a similar pattern of evolution: their level decreased, from the exponential to the stationary phase, in close correlation with the decrease in rates of glucose consumption, with only high-glucose-consuming clones maintaining high levels in the stationary phase. In contrast, SGLT1, GLUT2 and GLUT5 mRNAs were only expressed, like sucrase-isomaltase mRNA, in the low-glucose-consuming clones, and their level increased from the exponential to the stationary phase, in parallel with the differentiation of the cells. GLUT4 was undetectable in all the clones. Glucose deprivation generally resulted in a discrete decrease in the levels of all transporter mRNAs in all clones, one exception being GLUT2, which in the high-glucose-consuming clones is only detectable when the cells are grown in low glucose. These clones should be ideal tools with which to study in vitro, at the single-cell level, how these transporters concur to the utilization and transport of hexoses and how their exclusive or co-ordinated expression is regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.