Medical imaging is a complex process that capitulates images created by X-rays, ultrasound imaging, angiography, etc. During the imaging process, it also captures image noise during image acquisition, some of which are extremely corrosive, creating a disturbance that results in image degradation. The proposed work addresses the challenge to eliminate the corrosive Gaussian additive white noise from computed tomography (CT) images while preserving the fine details. The proposed approach is synthesized by amalgamating the concept of method noise with a deep learning-based framework of a convolutional neural network (CNN). The corrupted images are obtained by explicit addition of Gaussian additive white noise at multiple noise variance levels (σ = 10, 15, 20, 25). The denoised images obtained are then evaluated according to their visual quality and quantitative metrics, such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). These metrics for denoised CT images are then compared with their respective values for the reference CT image. The average PSNR value of the proposed method is 25.82, the average SSIM value is 0.85, and the average computational time is 2.8760. To better understand the proposed approach’s effectiveness, an intensity profile of denoised and original medical images is plotted and compared. To further test the performance of the proposed methodology, the results obtained are also compared with that of other non-traditional methods. The critical analysis of the results shows the commendable efficiency of the proposed methodology in denoising the medical CT images corrupted by Gaussian noise. This approach can be utilized in multiple pragmatic areas of application in the field of medical image processing.
With the growing emergence of the Internet connectivity in this era of Gen Z, several IoT solutions have come into existence for exchanging large scale of data securely, backed up by their own unique cloud service providers (CSPs). It has, therefore, generated the need for customers to decide the IoT cloud platform to suit their vivid and volatile demands in terms of attributes like security and privacy of data, performance efficiency, cost optimization, and other individualistic properties as per unique user. In spite of the existence of many software solutions for this decision-making problem, they have been proved to be inadequate considering the distinct attributes unique to individual user. This paper proposes a framework to represent the selection of IoT cloud platform as a MCDM problem, thereby providing a solution of optimal efficacy with a particular focus in user-specific priorities to create a unique solution for volatile user demands and agile market trends and needs using optimized distance-based approach (DBA) aided by Fuzzy Set Theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.