Cell-free biosensors are emerging as powerful platforms for monitoring human and environmental health. Here, we expand the capabilities of biosensors by interfacing their outputs with toehold- mediated strand displacement circuits, a dynamic DNA nanotechnology that enables molecular computation through programmable interactions between nucleic acid strands. We develop design rules for interfacing biosensors with strand displacement circuits, show that these circuits allow fine-tuning of reaction kinetics and faster response times, and demonstrate a circuit that acts like an analog-to-digital converter to create a series of binary outputs that encode the concentration range of the target molecule being detected. We believe this work establishes a pathway to create 'smart' diagnostics that use molecular computations to enhance the speed, robustness and utility of biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.