Trans FA (TFA) have at least one trans double bond and comprise several isomers and types, including many of the CLA (e.g., c9,t11-18:2 CLA). Some TFA may have adverse effects (e.g., cardiovascular disease), whereas some are thought to have beneficial effects (e.g., anticarcinogenicity). The presence of TFA in human tissues and fluids is related to dietary intake, although this relationship is not completely understood--especially in regard to serum lipid fractions. This study was conducted as part of an investigation designed to test the influence of butter (B), "low TFA" margarine (LT), and regular margarine (RM) on milk fat content. Here we tested the secondary hypothesis that consumption of B, LT, and RM by lactating women would result in differential distribution of TFA and CLA in major serum lipid classes. Breast-feeding women (n = 11) participated in this randomized Latin-square study consisting of five periods: intervention I (5 d), washout I (7 d), intervention II (5 d), washout II (7 d), and intervention III (5 d). Extracted serum lipid was separated into cholesterol ester (CE), TAG, and phospholipid (PL) fractions and analyzed for total and isomeric TFA and CLA concentrations. Data indicate that TAG consistently contained the highest concentration of total t-18:1. No interaction between treatment and fraction was found for any of the t-18:1 isomers identified. Absolute concentration of each t-18:1 isomer was greatest during the RM period, regardless of fraction. On a relative basis, concentrations of t10-18:1 and t12-18:1 were most responsive to treatment in the CE fraction. The concentration of c9,t11-18:2 CLA was highest in the TAG fraction and lowest in the PL fraction, regardless of treatment. In summary, these results indicate (i) that there is a differential distribution of some isomeric TFA and CLA among human serum lipid fractions and (ii) that dietary TFA intake influences absolute and relative concentrations of some of the isomers in selected fractions.
Substantial research suggests that the t10,c12-18:2, but not the c9,t11-18:2, isomer of conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating bovine and rodent species. Because fat is the major energy-yielding component in human milk, we were interested in whether this is true for women as well. Thus, the effects of c9,t11-18:2 and t10,c12-18:2 on milk fat were examined in breast-feeding women (n = 12) in a double-blind, placebo-controlled, crossover study with latin-square design. The study was divided into six periods: baseline (3 days), three intervention periods (5 days each), and two washout periods (9 days each). During each intervention period, women consumed 750 mg/day of a supplement containing predominantly c9,t11-18:2, t10,c12-18:2, or 18:1 (olive oil placebo). Milk was collected by complete breast expression on the final day of each period. Infant milk consumption was estimated by 24 h weighing on the penultimate day of each intervention and washout period, and maternal adiposity (% body fat) was determined at baseline using dual energy X-ray absorptiometry. Milk c9,t11-18:2 and t10,c12-18:2 concentrations were greater (P < 0.05) during the corresponding CLA treatment periods as compared to the placebo period, providing strong evidence of subject compliance. Both CLA isomers were transferred into milk fat at relatively high efficiency; average transfer efficiency was estimated to be 23.3%. Compared to the placebo treatment, milk fat content was not reduced during either CLA treatment. Data indicate that body fatness did not modify any putative effect of isomeric CLA consumption on milk fat concentration. The evidence from this study suggests that the sensitivity of lactating women's mammary tissue to an anti-lipogenic effect of the t10,c12-18:2 isoform of CLA may be less than previously hypothesized.
Isomeric CLA exhibit several significant biological activities in animals and humans and are easily isomerized to their corresponding t,t-CLA isomers during methylation with various acid-catalyzed reagents. To minimize such isomerization and provide a valid quantification of human plasma CLA content, several methylation methods were tested. Plasma neutral lipid, nonesterified FA (NEFA), and polar lipid classes were separated into the following fractions: (i) cholesteryl ester (CE, 1.2 mg/12 mL, 37.5% lipids), (ii) TAG (0.8 mg/12 mL, 25% lipids), (iii) NEFA (0.2 mg/12 mL, 6.2% lipids), (iv) MAG/DAG/cholesterol (0.3 mg/12 mL, 9.4% lipids), and (v) phospholipid (PL, 0.5 mg/20 mL, 15.6% lipids). Data showed that c9,t11-CLA found in TAG, MAG/DAG/cholesterol, and PL fractions were converted to methyl esters with sodium methoxide within 2 h at 55 degrees C. However, the c9,t11-CLA in the CE fraction could not be completely converted to methyl esters by sodium methoxide/acetylchloride in methanol or methanolic KOH; instead, CE was treated with sodium methoxide and methyl acetate in diethyl ether for 1 h. NEFA were converted to methyl esters with trimethylsilyldiazomethane (TMSDAM). All reaction mixtures were monitored by TLC prior to GLC analysis. The highest enrichment of c9,t11-18:2 (% FA) was in TAG (0.31%), followed by CE (0.14%) and PL (0.13%). The above methylation methods were then applied to a small subset (n = 10) of nonfasting plasma lipid fractions to confirm the applicability of these data. Results from this subset of samples also indicated that the greatest enrichment of c9,t11-CLA was present in the TAG fraction (0.39%), followed by CE (0.27%) and PL (0.22%). These data indicate that different plasma fractions have different c9,t11-CLA contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.