The requirement of fault diagnosis in the field of automobiles is growing higher day by day. The reliability of human resources for the fault diagnosis is uncertain. Brakes are one of the major critical components in automobiles that require closer and active observation. This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis. Vibration signals of a rotating element contain dynamic information about its health condition. Hence, the vibration signals were used for the brake fault diagnosis study. The study was carried out on a brake fault diagnosis experimental setup. The vibration signals under different fault conditions were acquired from the setup using an accelerometer. The condition monitoring of the hydraulic brake system using the vibration signal was processed using a machine learning approach. The machine learning approach has three phases, namely, feature extraction, feature selection, and feature classification. Histogram features were extracted from the vibration signals. The prominent features were selected using the decision tree. The selected features were classified using a fuzzy classifier. The histogram features and the fuzzy classifier combination produced maximum classification accuracy than that of the statistical features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.