The scope of this research work is the analysis and study of the rechargeable batteries. During this research, battery testbeds are developed for all under study battery technologies. A few hundreds of charging, discharging experimentation has been performed under a variety of charging profiles and discharging load patterns. These observations have been critically analyzed to capture the behavior of the batteries comprehensively. These behavioral profiles of these batteries have been utilized for developing an accurate battery model. The proposed model is a hybrid model composed of Diffusion model and combined electric circuit-based model, which accounts for nonlinearities of rate capacity effect, recovery effect, capacity fading, storage runtime and open circuit voltage, current-, temperature-, dependency to transient response. This proposed model would be a great help for energy aware circuit designing, because it's an equivalent circuit model that could be co-simulated in circuit simulation environment, like Matlab Simulink. A quantitative figure of merit for the selection of battery system for a specific microgrid application has been devised on the bases of important battery parameters.Keywords-Battery storage system, Micro-grid, Battery Model, Three stage battery charger, and constant current electronic load. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.