A novel cancelable FaceHashing technique based on non-invertible transformation with encryption and decryption template has been proposed in this paper. The proposed system has four components: face preprocessing, feature extraction, cancelable feature extraction followed by the classification, and encryption/decryption of cancelable face feature templates. During face preprocessing, the facial region of interest has been extracted out to speed the process for evaluating discriminant features. In feature extraction, some optimization techniques such as Sparse Representation Coding, Coordinate descent, and Block coordinates descent have been employed on facial descriptors to obtain the best representative of those descriptors. The representative descriptors are further arranged in a spatial pyramid matching structure to extract more discriminant and distinctive feature vectors. To preserve them, the existing BioHashing technique has been modified and extended to some higher levels of security attacks and the modified BioHashing technique computes a cancelable feature vector by the combined effect of the facial feature vector and the assigned token correspond to each user. The elements of computed cancelable feature vector are in a numeric form that has been employed to perform both verifications as well as identification task in online while the original facial feature vectors are kept offline either in hard drive or disc. Then, to enhance more security levels and also to preserve the cancelable face features, an RSA based encryptiondecryption algorithm has been introduced. The proposed system has been tested using four benchmark face databases: CASIA-FACE-v5, IITK, CVL, and FERET, and performance are obtained as correct recognition rate and equal error rate. The performance are compared to the state-of-the-art methods for the superiority of the proposed feature extraction technique and individual performance analysis has been performed at all the security levels of the proposed Cancelable FaceHashing Technique. These comparisons show the superiority of the proposed system.
A novel method for person identification based on the fusion of iris and periocular biometrics has been proposed in this paper. The challenges for image acquisition for Near-Infrared or Visual Wavelength lights under constrained and unconstrained environments have been considered here. The proposed system is divided into image preprocessing data augmentation followed by feature learning for classification components. In image preprocessing an annular iris, the portion is segmented out from an eyeball image and then transformed into a fixed-sized image region. The parameters of iris localization have been used to extract the local periocular region. Due to different imaging environments, the images suffer from various noise artifacts which create data insufficiency and complicates the recognition task. To overcome this situation a novel method for data augmentation technique has been introduced here. For features extraction and classification tasks wellknown VGG16, ResNet50, and Inception-v3 CNN ar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.