A hetero-Fenton catalyst comprising of Fe3O4 nanoparticles loaded on zeolite (FeZ) has been synthesized using a facile co-precipitation method. The catalyst was characterized using various characterization methods and then, subsequently, was used to degrade ofloxacin (OFL, 20 mg/L), an antibiotic, via a heterogeneous Fenton process in the presence of an oxidizing agent. The effects of different parameters such as Fe3O4 loading on zeolite, catalyst loading, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, and inorganic salts were studied to determine the performance of the FeZ catalyst towards Fenton degradation of OFL under different conditions. Experimental results revealed that as much as 88% OFL and 51.2% total organic carbon (TOC) could be removed in 120 min using the FeZ catalyst. Moreover, the FeZ composite catalyst showed good stability for Fenton degradation of OFL even after five cycles, indicating that the FeZ catalyst could be a good candidate for wastewater remediation.
In this work, FeM composites consisting of montmorillonite and variable amounts of Fe3O4 were successfully synthesized via a facile co-precipitation process. They were characterized using X-ray photoelectron spectroscopy (XPS), a field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), a transmission electron microscope (TEM), N2 adsorption–desorption, and Fourier transform infrared spectroscopy (FTIR) techniques to explain the effect of Fe3O4 content on the physicochemical properties of the Fe3O4–montmorillonite (FeM) composites. The FeM composites were subsequently used as heterogeneous Fenton catalysts to activate green oxidant (H2O2) for the subsequent degradation of ofloxacin (OFL) antibiotic. The efficiency of the FeM composites was studied by varying various parameters of Fe3O4 loading on montmorillonite, catalyst dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, inorganic salts, and solar irradiation. Under the conditions of 0.75 g/L FeM-10, 5 mL/L H2O2, and natural pH, almost 81% of 50 mg/L of OFL was degraded within 120 min in the dark, while total organic carbon (TOC) reduction was about 56%. Although FeM composites could be a promising heterogeneous catalyst for the activation of H2O2 to degrade organic pollutants, including OFL antibiotic, the FeM-10 composite shows a significant drop in efficiency after five cycles, which indicates that more studies to improve this weakness should be conducted.
Energy generation using microbial fuel cells (MFC) and removing toxic metal ions is a potentially exciting new field of study as it has recently attracted a lot of interest in the scientific community. However, MFC technology is facing several challenges, including electron production and transportation. Therefore, the present work focuses on enhancing electron generation by extracting sugarcane waste. MFC was successfully operated in a batch mode for 79 days in the presence of 250 mg/L Pb2+ and Hg2+ ions. Sugarcane extract was regularly fed to it without interruption. On day 38, the maximum current density and power density were recorded, which were 86.84 mA/m2 and 3.89 mW/m2, respectively. The electrochemical data show that a sufficient voltage generation and biofilm formation produce gradually. The specific capacitance was found to be 11 × 10−4 F/g on day 79, indicating the steady growth of biofilm. On the other hand, Pb2+ and Hg2+ removal efficiencies were found to be 82% and 74.85%, respectively. Biological investigations such as biofilm analysis and a recent literature survey suggest that conductive-type pili species can be responsible for energy production and metal removal. The current research also explored the oxidation method of sugarcane extract by bacterial communities, as well as the metal removal mechanism. According to the parameter optimization findings, a neutral pH and waste produced extract can be an optimal condition for MFC operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.