Understanding immune responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses following Omicron/BA.1 infection in mRNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation (SHM) and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells (MBCs). BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit, which is highly conserved across SARS-CoV-2 variants of concern (VOCs), and toward the antigenically variable receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 VOCs. Together, these findings provide insights into the role of pre-existing immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.
Understanding immune responses following SARS-CoV-2 breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses following Omicron/BA.1 infection in mRNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation (SHM) and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells (MBCs). BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit toward the receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 variants of concern (VOCs). Together, these findings provide fundamental insights into the role of pre-existing immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.
We report a role for CA repeats in the 3 -untranslated region (3 -UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3 -UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3 -UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3 -UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3 -UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.