Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.
Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and ⁄ or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.
When related taxa hybridize extensively, their genomes may become increasingly homogenized over time. This mixing via hybridization creates conservation challenges when it reduces genetic or phenotypic diversity and when it endangers previously distinct species via genetic swamping [1]. However, hybridization also facilitates admixture mapping of traits that distinguish each species and the associated genes that maintain distinctiveness despite ongoing gene flow [2]. We address these dual aspects of hybridization in the golden-winged/blue-winged warbler complex, two phenotypically divergent warblers that are indistinguishable using traditional molecular markers and that draw substantial conservation attention [3-5]. Whole-genome comparisons show that differentiation is extremely low: only six small genomic regions exhibit strong differences. Four of these divergence peaks occur in proximity to genes known to be involved in feather development or pigmentation: agouti signaling protein (ASIP), follistatin (FST), ecodysplasin (EDA), wingless-related integration site (Wnt), and beta-carotene oxygenase 2 (BCO2). Throat coloration-the most striking plumage difference between these warblers-is perfectly associated with the promoter region of agouti, and genotypes at this locus obey simple Mendelian recessive inheritance of the black-throated phenotype characteristic of golden-winged warblers. The more general pattern of genomic similarity between these warblers likely results from a protracted period of hybridization, contradicting the broadly accepted hypothesis that admixture results from solely anthropogenic habitat change in the past two centuries [4]. Considered in concert, these results are relevant to both the genetic architecture of avian feather pigmentation and the evolutionary history and conservation challenges associated with these declining songbirds.
Summary Restriction site‐associated DNA sequencing (RAD‐seq) provides high‐resolution population genomic data at low cost, and has become an important component in ecological and evolutionary studies. As with all high‐throughput technologies, analytic strategies require critical validation to ensure precise and unbiased interpretation. To test the impact of bioinformatic data processing on downstream population genetic inferences, we analysed mammalian RAD‐seq data (>100 individuals) with 312 combinations of methodology (de novo vs. mapping to references of increasing divergence) and filtering criteria (missing data, HWE, FIS, coverage, mapping and genotype quality). In an effort to identify commonalities and biases in all pipelines, we computed summary statistics (nr. loci, nr. SNP, π, Hetobs, FIS, FST, Ne and m) and compared the results to independent null expectations (isolation‐by‐distance correlation, expected transition‐to‐transversion ratio Ts/Tv and Mendelian mismatch rates of known parent–offspring trios). We observed large differences between reference‐based and de novo approaches, the former generally calling more SNPs and reducing FIS and Ts/Tv. Data completion levels showed little impact on most summary statistics, and FST estimates were robust across all pipelines. The site frequency spectrum was highly sensitive to the chosen approach as reflected in large variance of parameter estimates across demographic scenarios (single‐population bottlenecks and isolation‐with‐migration model). Null expectations were best met by reference‐based approaches, although contingent on the specific criteria. We recommend that RAD‐seq studies employ reference‐based approaches to a closely related genome, and due to the high stochasticity associated with the pipeline advocate the use of multiple pipelines to ensure robust population genetic and demographic inferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.