Lamivudine (3TC), the negative enantiomer of 2'-deoxy-3'-thiacytidine, is a dideoxynucleoside analogue used in combination with other agents in the treatment of human immunodeficiency virus type 1 (HIV-1) infection and as monotherapy in the treatment of hepatitis B virus (HBV) infection. Lamivudine undergoes anabolic phosphorylation by intracellular kinases to form lamivudine 5'-triphosphate, the active anabolite which prevents HIV-1 and HBV replication by competitively inhibiting viral reverse transcriptase and terminating proviral DNA chain extension. The pharmacokinetics of lamivudine are similar in patients with HIV-1 or HBV infection, and healthy volunteers. The drug is rapidly absorbed after oral administration, with maximum serum concentrations usually attained 0.5 to 1.5 hours after the dose. The absolute bioavailability is approximately 82 and 68% in adults and children, respectively. Lamivudine systemic exposure, as measured by the area under the serum drug concentration-time curve (AUC), is not altered when it is administered with food. Lamivudine is widely distributed into total body fluid, the mean apparent volume of distribution (Vd) being approximately 1.3 L/kg following intravenous administration. In pregnant women, lamivudine concentrations in maternal serum, amniotic fluid, umbilical cord and neonatal serum are comparable, indicating that the drug diffuses freely across the placenta. In postpartum women lamivudine is secreted into breast milk. The concentration of lamivudine in cerebrospinal fluid (CSF) is low to modest, being 4 to 8% of serum concentrations in adults and 9 to 17% of serum concentrations in children measured at 2 to 4 hours after the dose. In patients with normal renal function, about 5% of the parent compound is metabolised to the trans-sulphoxide metabolite, which is pharmacologically inactive. In patients with renal impairment, the amount of trans-sulphoxide metabolite recovered in the urine increases, presumably as a function of the decreased lamivudine elimination. As approximately 70% of an oral dose is eliminated renally as unchanged drug, the dose needs to be reduced in patients with renal insufficiency. Hepatic impairment does not affect the pharmacokinetics of lamivudine. Systemic clearance following single intravenous doses averages 20 to 25 L/h (approximately 0.3 L/h/kg). The dominant elimination half-life of lamivudine is approximately 5 to 7 hours, and the in vitro intracellular half-life of its active 5'-triphosphate anabolite is 10.5 to 15.5 hours and 17 to 19 hours in HIV-1 and HBV cell lines, respectively. Drug interaction studies have shown that trimethoprim increases the AUC and decreases the renal clearance of lamivudine, although lamivudine does not affect the disposition of trimethoprim. Other studies have demonstrated no significant interaction between lamivudine and zidovudine or between lamivudine and interferon-alpha-2b. There is limited potential for drug-drug interactions with compounds that are metabolised and/or highly protein bound.
While H2(15)O positron emission tomography (PET) is still the gold standard in the quantitative assessment of cerebral perfusion (rCBF), its technical challenge, limited availability, and radiation exposure are disadvantages of the method. Recent work demonstrated the feasibility of magnetic resonance (MR) for quantitative cerebral perfusion imaging. There remain open questions, however, especially regarding reproducibility. The main purpose of this study was to assess the accuracy and reproducibility of MR-derived flow values to those derived from H2(15)O PET. Positron emission tomography and MR perfusion imaging was performed in 20 healthy male volunteers, who were chronic smokers, on day 1 and day 3 of a 4-day hospitalization. Subjects were randomly assigned to one of two groups, each with 10 subjects. One group was allowed to smoke as usual during the hospitalization, while the other group stopped smoking from day 2. Positron emission tomography and MR images were coregistered and rCBF was determined in two regions of interest, defined over gray matter (gm) and white matter (wm), yielding rCBF(PET)gm, rCBF(MR)gm, rCBF(PET)wm, and rCBF(MR)wm. Bland-Altman analysis was used to investigate reproducibility by assessing the difference rCBFday3 - rCBFday1 in eight continual-smoker volunteers. The analysis showed a good reproducibility for PET, but not for MR. Mean +/- SD of the difference rCBFday3 - rCBFday1 in gray matter was 6.35 +/- 21.06 and 0.49 +/- 5.27 mL x min(-1) x 100 g(-1) for MR and PET, respectively; the corresponding values in white matter were 2.60 +/- 15.64 and -1.14 +/- 4.16 mL x min(-1) x 100 g(-1). The Bland-Altman analysis was also used to assess MRI and PET agreement comparing rCBF measured on day 1. The analysis demonstrated a reasonably good agreement of MR and PET in white matter (rCBF(PET)wm - rCBF(MR)wm; -0.09 +/- 7.23 mL x min(-1) x 100 g(-1)), while in gray matter a reasonable agreement was only achieved after removing vascular artifacts in the MR perfusion maps (rCBF(PET)gm - rCBF(MR)gm; -11.73 +/- 14.52 mL x min(-1) x 100 g(-1)). In line with prior work, these results demonstrate that reproducibility was overall considerably better for PET than for MR. Until reproducibility is improved and vascular artifacts are efficiently removed, MR is not suitable for reliable quantitative perfusion measurements.
The data suggested that craving and withdrawal symptoms may be sustained by different physiological pathways, and that only selected components of cigarette craving are influenced by NRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.