Transcriptional profiling was performed to survey the global expression patterns of 20 anatomically distinct sites of the human central nervous system (CNS). Forty-five non-CNS tissues were also profiled to allow for comparative analyses. Using principal component analysis and hierarchical clustering, we were able to show that the expression patterns of the 20 CNS sites profiled were significantly different from all non-CNS tissues and were also similar to one another, indicating an underlying common expression signature. By focusing our analyses on the 20 sites of the CNS, we were able to show that these 20 sites could be segregated into discrete groups with underlying similarities in anatomical structure and, in many cases, functional activity. These findings suggest that gene expression data can help define CNS function at the molecular level. We have identified subsets of genes with the following patterns of expression: (1) across the CNS, suggesting homeostatic/housekeeping function; (2) in subsets of functionally related sites of the CNS identified by our unsupervised learning analyses; and (3) in single sites within the CNS, indicating their participation in distinct site-specific functions. By performing network analyses on these gene sets, we identified many pathways that are upregulated in particular sites of the CNS, some of which were previously described in the literature, validating both our dataset and approach. In summary, we have generated a database of gene expression that can be used to gain valuable insight into the molecular characterization of functions carried out by different sites of the human CNS.
Fractalkine is a unique chemokine reported to be constitutively expressed by neurons. Its only receptor, CX3CR1, is expressed by microglia. Little is known about the expression of fractalkine and CX3CR1 in spinal cord. Given that peripheral nerve inflammation and/or injury gives rise to neuropathic pain, and neuropathic pain may be partially mediated by spinal cord glial activation and consequent glial proinflammatory cytokine release, there must be a signal released by affected neurons that triggers the activation of glia. We sought to determine whether there is anatomical evidence implicating spinal fractalkine as such a neuron-to-glia signal. We mapped the regional and cellular localization of fractalkine and CX3CR1 in the rat spinal cord and dorsal root ganglion, under basal conditions and following induction of neuropathic pain, employing both an inflammatory (sciatic inflammatory neuropathy; SIN) as well as a traumatic (chronic constriction injury; CCI) model. Fractalkine immunoreactivity and mRNA were observed in neurons, but not glia, in the rat spinal cord and dorsal root ganglia, and levels did not change following either CCI or SIN. By contrast, CX3CR1 was expressed by microglia in the basal state, and the microglial cellular concentration was up-regulated in a regionally specific manner in response to neuropathy. CX3CR1-expressing cells were identified as microglia by their cellular morphology and positive OX-42 and CD4 immunostaining. The cellular distribution of fractalkine and CX3CR1 in the spinal circuit associated with nociceptive transmission supports a potential role in the mechanisms that contribute to the exaggerated pain state in these models of neuropathy.
Recent evidence suggests that spinal cord glia can contribute to enhanced nociceptive responses. However, the signals that cause glial activation are unknown. Fractalkine (CX3C ligand-1; CX3CL1) is a unique chemokine expressed on the extracellular surface of spinal neurons and spinal sensory afferents. In the dorsal spinal cord, fractalkine receptors are primarily expressed by microglia. As fractalkine can be released from neurons upon strong activation, it has previously been suggested to be a neuron-to-glial signal that induces glial activation. The present series of experiments provide an initial investigation of the spinal pain modulatory effects of fractalkine. Intrathecal fractalkine produced dose-dependent mechanical allodynia and thermal hyperalgesia. In addition, a single injection of fractalkine receptor antagonist (neutralizing antibody against rat CX3C receptor-1; CX3CR1) delayed the development of mechanical allodynia and/or thermal hyperalgesia in two neuropathic pain models: chronic constriction injury (CCI) and sciatic inflammatory neuropathy. Intriguingly, anti-CX3CR1 reduced nociceptive responses when administered 5-7 days after CCI, suggesting that prolonged release of fractalkine may contribute to the maintenance of neuropathic pain. Taken together, these initial investigations of spinal fractalkine effects suggest that exogenous and endogenous fractalkine are involved in spinal sensitization, including that induced by peripheral neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.