A glyphosate-resistant Palmer amaranth biotype was confirmed in central Georgia. In the field, glyphosate applied to 5- to 13-cm-tall Palmer amaranth at three times the normal use rate of 0.84 kg ae ha−1controlled this biotype only 17%. The biotype was controlled 82% by glyphosate at 12 times the normal use rate. In the greenhouse,I50values (rate necessary for 50% inhibition) for visual control and shoot fresh weight, expressed as percentage of the nontreated, were 8 and 6.2 times greater, respectively, with the resistant biotype compared with a known glyphosate-susceptible biotype. Glyphosate absorption and translocation and the number of chromosomes did not differ between biotypes. Shikimate was detected in leaf tissue of the susceptible biotype treated with glyphosate but not in the resistant biotype.
Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.
An experiment was conducted at four locations in North Carolina during 1994 and 1995 to evaluate weed control, cotton yield, fiber quality, and net returns in no-tillage bromoxynil-tolerant cotton. The experiment focused on using bromoxynil or pyrithiobac sodium applied early POST over-the-top as alternatives to fluometuron plus MSMA applied early POST directed. Fluometuron plus MSMA was more effective than bromoxynil or pyrithiobac sodium on tall morningglory, large crabgrass, goosegrass, and broadleaf signalgrass. Bromoxynil and fluometuron plus MSMA were similarly effective on common lambsquarters, common ragweed, and eclipta and more effective than pyrithiobac sodium. Pyrithiobac sodium and fluometuron plus MSMA were similarly effective on smooth pigweed and Palmer amaranth and more effective than bromoxynil. Prickly sida control by bromoxynil and pyrithiobac sodium was equal to or greater than control by fluometuron plus MSMA. All early POST herbicides controlled pitted morningglory similarly. Regardless of the early POST herbicides used, fluometuron applied PRE and cyanazine plus MSMA applied late POST directed increased control of most weeds and increased cotton yield and net returns. Bromoxynil and pyrithiobac sodium effectively substituted for fluometuron plus MSMA only in systems that included fluometuron applied PRE and cyanazine plus MSMA applied late POST directed. Effects of herbicide systems on cotton fiber quality were minor.
An experiment was conducted at six locations in North Carolina to compare weed-management treatments using glufosinate postemergence (POST) in glufosinate-resistant soybean, glyphosate POST in glyphosate-resistant soybean, and imazaquin plus SAN 582 preemergence (PRE) followed by chlorimuron POST in nontransgenic soybean. Prickly sida and sicklepod were controlled similarly and 84 to 100% by glufosinate and glyphosate. Glyphosate controlled broadleaf signalgrass, fall panicum, goosegrass, rhizomatous johnsongrass, common lambsquarters, and smooth pigweed at least 90%. Control of these weeds by glyphosate often was greater than control by glufosinate. Mixing fomesafen with glufosinate increased control of these species except johnsongrass. Glufosinate often was more effective than glyphosate on entireleaf and tall morningglories. Fomesafen mixed with glyphosate increased morningglory control but reduced smooth pigweed control. Glufosinate or glyphosate applied sequentially or early postemergence (EPOST) following imazaquin plus SAN 582 PRE often were more effective than glufosinate or glyphosate applied only EPOST. Only rhizomatous johnsongrass was controlled more effectively by glufosinate or glyphosate treatments than by imazaquin plus SAN 582 PRE followed by chlorimuron POST. Yields and net returns with soil-applied herbicides only were often lower than total POST herbicide treatments. Sequential POST herbicide applications or soil-applied herbicides followed by POST herbicides were usually more effective economically than single POST herbicide applications.
Development and utilization of dicamba-, glufosinate-, and 2,4-D-resistant crop cultivars will potentially have a significant influence on weed management in the southern United States. However, off-site movement to adjacent nontolerant crops and other plants is a concern in many areas of eastern North Carolina and other portions of the southeastern United States, especially where sensitive crops are grown. Cotton, peanut, and soybean are not resistant to these herbicides, will most likely be grown in proximity, and applicators will need to consider potential adverse effects on nonresistant crops when these herbicides are used. Research was conducted with rates of glufosinate, dicamba, and 2,4-D designed to simulate drift on cotton, peanut, and soybean to determine effects on yield and quality and to test correlations of visual estimates of percent injury with crop yield and a range of growth and quality parameters. Experiments were conducted in North Carolina near Lewiston-Woodville and Rocky Mount during 2009 and 2010. Cotton and peanut (Lewiston-Woodville and Rocky Mount) and soybean (two separate fields [Rocky Mount] during each year were treated with dicamba and the amine formulation of 2,4-D at 1/2, 1/8, 1/32, 1/128, and 1/512 the manufacturer's suggested use rate of 280 g ai ha−1and 540 g ai ha−1, respectively. Glufosinate was applied at rates equivalent to 1/2, 1/4, 1/8, 1/16, and 1/32 the manufacturer's suggested use rate of 604 g ai ha−1. A wide range of visible injury was noted at both 1 and 2 wk after treatment (WAT) for all crops. Crop yield was reduced for most crops when herbicides were applied at the highest rate. Although correlations of injury 1 and 2 WAT with yield were significant (P ≤ 0.05), coefficients ranged from −0.25 to −0.50, −0.36 to −0.62, and −0.40 to −0.67 for injury 1 WAT vs. yield for cotton, peanut, and soybean, respectively. These respective crops had ranges of correlations of −0.17 to −0.43, −0.34 to −0.64, and −0.41 to −0.60 for injury 2 WAT. Results from these experiments will be used to emphasize the need for diligence in application of these herbicides in proximity to crops that are susceptible as well as the need to clean sprayers completely before spraying sensitive crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.