Mitochondria are intimately involved in the generation of and defense against reactive oxygen species (ROS). Mitochondria are themselves targets of oxidative stress and also contribute to mechanisms by which oxidative stress-related signals control cell fate. Ethanol promotes oxidative stress, both by increasing ROS formation and by decreasing cellular defense mechanisms. These effects of ethanol are prominent in the liver, the major site of ethanol metabolism in the body. The question remains to what extent this contributes to ethanol-dependent tissue damage or the susceptibility of cells to other stressors. In this review, we consider how mitochondrial actions of ethanol influence oxidative stress management of liver cells. Mitochondrial electron transport constitutes the major intracellular source of ROS, and ethanol treatment imposes conditions that promote ROS formation by mitochondria, the effects of which may be enhanced by a decrease in mitochondrial oxidative stress defenses. A significant target of ethanol-related increases in oxidative stress is mitochondrial DNA. Ethanol-induced damage to mitochondrial DNA, if not adequately repaired, impairs mitochondrial function, which further increases oxidative stress in the cell, leading to a vicious cycle of accumulating cell damage that is more apparent with advancing age. Uncontrolled mitochondrial formation of ROS promotes the inappropriate activation of the mitochondrial permeability transition, increasing the sensitivity of cells to other proapoptotic or damage signals. In combination with ethanol-induced defects in mitochondrial function, these alterations may promote both apoptotic and necrotic cell death in response to otherwise benign or beneficial challenges and contribute to the onset or progression of alcohol-induced liver diseases.Chronic excessive alcohol consumption causes injury to the liver and other tissues, but, despite intensive study, the factors that relate ethanol intake to the onset and progression of liver disease remain controversial. There is considerable evidence from both human and animal studies that alcohol consumption enhances oxidative stress, in liver as well as in other tissues. However, opinions are divided as to why oxidative stress develops, how it affects liver function, and what its relevance is for liver pathology. 1-6 Mitochondria are recognized as the major intracellular source of reactive oxygen species (ROS), which is generated as a by-product of their major metabolic activity of cellular respiration. 7 Mitochondrial constituents are themselves targets of ROS, and the mitochondrial management of oxidative stress has consequences both for cellular energy metabolism and for the processes that control the onset and progression of the cell death response, whether it results in apoptosis or necrosis. Hence, an understanding of how these complementary functions of mitochondria are affected by alcohol consumption may provide important insights into the mechanisms associated with liver damage. In this review, we wil...
A major cause of clinical disability in multiple sclerosis (MS) is related to a degenerative process in the central nervous system (CNS) which ultimately develops from a potentially reversible inflammation and demyelination. The mechanism of this degenerative process within MS lesions is not completely understood. We hypothesize that oxidative damage to DNA secondary to inflammation may contribute to irreversible tissue alterations in a plaque. To test this assumption, we determined the level of a DNA oxidative marker, 8-hydroxy-deoxy-guanosine (8-OH-dG) in the normal appearing white matter (NAWM), plaque and cortical regions of cerebella from MS patients who suffered from severe cerebellar symptoms during the course of the disease, and in NAWM and cortical regions of cerebella from non-neurological controls. We found a significant increase in DNA oxidation within plaques compared to NAWM specimens in MS cerebella. A tendency for increase of oxidative markers in normal appearing cortical tissues located in the proximity of MS plaques was also observed when compared to those in control cortical specimens. Oxidative damage to DNA in MS lesions, and in neuron rich areas located in the proximity of these lesions is likely related to the release of reactive oxygen species (ROS) and nitric oxide (NO) during inflammation in the brain. This biochemical impairment of DNA and of other macromolecules may contribute to the development of severe clinical disability through the induction of degenerative changes within and outside of plaques in MS brains.
Chronic ethanol consumption adversely affects the respiratory activity of rat liver mitochondria. It causes increased cellular production of oxygen radical species and selectively decreases mitochondrial glutathione (GSH) levels. Here we show, using Southern hybridization techniques on total rat genomic DNA, that long-term (11-13 months) ethanol feeding, using the Lieber-DeCarli diet, results in a 36% (P F .05; n ؍ 4) decrease in hepatic mitochondrial DNA (mtDNA) levels when compared with paired controls. UV quantitation of mtDNA isolated from hepatic mitochondria showed that chronic ethanol intake (11-13 months) causes a 44% (P F .01; n ؍ 6) decrease in the amount of mtDNA per milligram of mitochondrial protein. No significant decline in mtDNA levels was seen in ethanol-fed animals maintained on the diet for 1 to 5 months. Ethanol feeding caused a 42% (P F .01; n ؍ 4) and a 132% (P F .05; n ؍ 3) increase in 8-hydroxydeoxyguanosine (8-OHdG) formation in mtDNA in animals maintained on the diet for 3 to 6 months and 10 to 11 months, respectively. In addition, agarose gel electrophoresis revealed a 49% increase (P F .05; n ؍ 3) in mtDNA single-strand breaks (SSB) in animals fed ethanol for more than 1 year. These findings suggest that chronic ethanol consumption causes enhanced oxidative damage to mtDNA in older animals along with increased strand breakage, and that this results in its selective removal/ degradation by mtDNA repair enzymes. (HEPATOLOGY 1999; 30:881-888.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.