Our findings identify butyrate as a critical regulator of ILC2 proliferation and function through its HDAC inhibitory activity and can serve as a potential therapeutic target for asthma.
IntroductionDysregulation of the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol-3-kinase (PI3K)/Akt pathway was shown to correlate with breast cancer disease progression. Cancer stem cells are a subpopulation within cancer cells that participate in tumor initiation, radio/chemoresistance and metastasis. In breast cancer, breast cancer stem cells (BCSCs) were identified as CD24-CD44+ cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Elucidation of the role of IGF-1R in BCSCs is crucial to the design of breast cancer therapies targeting BCSCs.MethodsIGF-1R expression in BCSCs and noncancer stem cells sorted from xenografts of human primary breast cancers was examined by fluorescence-activated cell sorting (FACS), western blot analysis and immunoprecipitation. The role of IGF-1R in BCSCs was assessed by IGF-1R blockade with chemical inhibitor and gene silencing. Involvement of PI3K/Akt/mammalian target of rapamycin (mTOR) as the downstream pathway was studied by their phosphorylation status upon IGF-1R inhibition and the effects of chemical inhibitors of these signaling molecules on BCSCs. We also studied 16 clinical specimens of breast cancer for the expression of phosphor-Akt in the BCSCs by FACS.ResultsExpression of phosphorylated IGF-1R was greater in BCSCs than in non-BCSCs from xenografts of human breast cancer, which were supported by western blot and immunoprecipitation experiments. The sorted IGF-1R-expressing cells displayed features of cancer stem/progenitors such as mammosphere formation in vitro and tumorigenicity in vivo, both of which were suppressed by knockdown of IGF-1R. A specific inhibitor of the IGF-1R, picropodophyllin suppressed phospho-AktSer473 and preferentially decreased ALDH+ BCSC populations of human breast cancer cells. Furthermore, picropodophyllin inhibited the capacity of CD24-CD44+ BCSCs to undergo the epithelial-mesenchymal transition process with downregulation of mesenchymal markers. Inhibitors of signal molecules downstream of IGF-1R including PI3K/Akt/mTOR also reduced the ALDH+ population of breast cancer cells. Furthermore, the mTOR inhibitor, rapamycin, suppressed BCSCs in vitro and in vivo.ConclusionOur data support the notion that IGF-1R is a marker of stemness, and IGF-1R and its downstream PI3K/Akt/mTOR pathway are attractive targets for therapy directed against breast cancer stem/progenitors.
Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α are master transcription factors that regulate cellular responses to hypoxia, but the exact function in regulatory T (Treg) cells is controversial. Here, we show that Treg cell development is normal in mice with Foxp3-specific knockout (KO) of HIF-1α or HIF-2α. However, HIF-2α-KO (but not HIF-1α-KO) Treg cells are functionally defective in suppressing effector T cell-induced colitis and inhibiting airway hypersensitivity. HIF-2α-KO Treg cells have enhanced reprogramming into IL-17-secreting cells. We show crosstalk between HIF-2α and HIF-1α, and that HIF-2α represses HIF-1α expression. HIF-1α is upregulated in HIF-2α-KO Treg cells and further deletion of HIF-1α restores the inhibitory function of HIF-2α-KO Treg cells. Mice with Foxp3-conditional KO of HIF-2α are resistant to growth of MC38 colon adenocarcinoma and metastases of B16F10 melanoma. Together, these results indicate that targeting HIF-2α to destabilize Treg cells might be an approach for regulating the functional activity of Treg cells.
In recent decades, magnetic nanoparticles have emerged as a promising new platform in biomedical applications, particularly bioseparations. We have developed an immunoassay using antibody-conjugated magnetic nanoparticles as an efficient affinity probe to simultaneously preconcentrate and isolate targeted antigens from biological media. We combined this probe with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS) to profile proteins in diluted human plasma. The nanoparticles were designed to detect several disease-associated proteins and could be used directly in MALDI MS without an elution step, thereby facilitating multiple antigen screening and the characterization of antigen variants. Plasma antigens bound rapidly (approximately 10 min) to the antibody-conjugated nanoparticles, allowing the assay to be performed within 20 min. With sensitivity of detection in the femtomole range, the nanoscale immunoassay is superior to assays using microscale particles. We applied our method to comparative protein profiling of patients with gastric cancer and healthy individuals and found differential protein expression levels associated with the disease as well as individuals. Given the flexibility of manipulating functional groups on the nanoprobes, their low cost, robustness, and simplicity of the assay, our approach shows promise for targeted proteome profiling in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.