*These authors contributed equally to this work.Clostridium difficile infection is the leading cause of healthcare associated diarrhoea in Europe and North America 1, 2 . During infection, C. difficile produces two key virulence determinants, toxin A and toxin B. Experiments with purified toxins have suggested that toxin A alone is able to evoke the symptoms of C. difficile infection, but toxin B is unable to do so unless it is mixed with toxin A, or there is prior damage to the gut mucosa 3 . However, a recent study suggested that toxin B is essential for C. difficile virulence and that a strain producing toxin A alone was avirulent 4 . This creates a paradox over the individual importance of toxin A and toxin B. Here we show that isogenic mutants of C. difficile producing either toxin A or toxin B alone can cause fulminant disease in the hamster model of infection. By using a gene knock-out system 5, 6 to permanently inactivate the toxin genes, we found that C. difficile producing either one or both toxins displayed cytotoxic activity in vitro, which translated directly into virulence in vivo.Furthermore, by constructing the first ever double mutant strain of C. difficile, in which both toxin genes were inactivated, we were able to completely attenuate virulence. Our findings re-establish the importance of both toxin A and toxin B and highlight the need to continue considering both toxins in the development of diagnostic tests and effective counter-measures against C. difficile.2 Toxin A and toxin B both catalyse the glucosylation, and hence inactivation, of Rho-GTPases; small regulatory proteins of the eukaryotic actin cell cytoskeleton. This leads to disorganisation of the cell cytoskeleton and cell death 7 . The toxin genes, tcdA and tcdB, are situated on the C. difficile chromosome in a 19.6 kilobase pathogenicity locus (PaLoc), along with the three accessory genes, tcdC, tcdR and tcdE (Fig. 1a). To address the individual importance of toxin A and toxin B, we used the ClosTron gene knock-out system 6 to inactivate the toxin genes of C. difficile. This system inactivates genes by inserting an intron into the protein-encoding DNA sequence of a gene, thus resulting in a truncated and non-functional protein. The intron sequence itself encompasses an erythromycin resistance determinant which permits selective isolation of mutants. Furthermore, it has been shown experimentally that the insertions are completely stable, meaning that inactivation of a gene is permanent 5 .Using the ClosTron system, we targeted insertions to tcdA and tcdB at nucleotide positions 1584 and 1511, respectively (Fig. 1a). In both cases, this placed the intron within DNA sequence encoding the toxin catalytic domain. Three separate isogenic The genotype of each toxin mutant was characterised by PCR and DNA sequence analysis to confirm the exact location of each intron insertion made (data not shown).Southern blot analysis of EcoRV-digested genomic DNA samples, using an intron-3 specific probe, confirmed that the A -B + and A + B -mutants ...
Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput microarray format. Using this method, we identified a group of structurally related materials comprising ester and cyclic hydrocarbon moieties that substantially reduced the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Coating silicone with these 'hit' materials achieved up to a 30-fold (96.7%) reduction in the surface area covered by bacteria compared with a commercial silver hydrogel coating in vitro, and the same material coatings were effective at reducing bacterial attachment in vivo in a mouse implant infection model. These polymers represent a class of materials that reduce the attachment of bacteria that could not have been predicted to have this property from the current understanding of bacteriasurface interactions.
SummaryIn Staphylococcus aureus, the agr locus is responsible for controlling virulence gene expression via quorum sensing. As the blockade of quorum sensing offers a novel strategy for attenuating infection, we sought to gain novel insights into the structure, activity and turnover of the secreted staphylococcal autoinducing peptide (AIP) signal molecules. A series of analogues (including the L-alanine and D-amino acid scanned peptides) was synthesized to determine the functionally critical residues within the S. aureus group I AIP. As a consequence, we established that (i) the group I AIP is inactivated in culture supernatants by the formation of the corresponding methionyl sulphoxide; and (ii) the group I AIP lactam analogue retains the capacity to activate agr, suggesting that covalent modification of the AgrC receptor is not a necessary prerequisite for agr activation. Although each of the D-amino acid scanned AIP analogues retained activity, replacement of the endocyclic amino acid residue (aspartate) located C-terminally to the central cysteine with alanine converted the group I AIP from an activator to a potent inhibitor. The screening of clinical S. aureus isolates for novel AIP groups revealed a variant that differed from the group I AIP by a single amino acid residue (aspartate to tyrosine) in the same position defined as critical by alanine scanning. Although this AIP inhibits group I S. aureus strains, the producer strains possess a functional agr locus dependent on the endogenous peptide and, as such, constitute a fourth S. aureus AIP pheromone group (group IV). The addition of exogenous synthetic AIPs to S. aureus inhibited the production of toxic shock syndrome toxin (TSST-1) and enterotoxin C3, confirming the potential of quorum-sensing blockade as a therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.