This review focuses on the extracellular proteoglycans. Special emphasis is placed on the structural features of their protein cores, their gene organization, and their transcriptional control. A simplified nomenclature comprising two broad groups of extracellular proteoglycans is offered: the small leucine-rich proteoglycans or SLRPs, pronounced "slurps, " and the modular proteoglycans. The first group encompasses at least five distinct members of a gene family characterized by a central domain composed of leucine-rich repeats flanked by two cysteine-rich regions. The second group consists of those proteoglycans whose unifying feature is the assembly of various protein modules in a relatively elongated and often highly glycosylated structure. This group is quite heterogeneous and includes a distinct family of proteoglycans, the "hyalectans," that bind hyaluronan and contain a C-type lectin motif that is likely to bind carbohydrates, and a less distinct group that contains structural homologies but lacks hyaluronan-binding properties or lectin-like domains.
Perlecan is a modular heparan sulfate proteoglycan that is localized to cell surfaces and within basement membranes. Its ability to interact with basic fibroblast growth factor (bFGF) suggests a central role in angiogenesis during development, wound healing, and tumor invasion. In the present study we investigated, using domain specific anti-perlecan monoclonal antibodies, the binding site of bFGF on human endothelial perlecan and its cleavage by proteolytic and glycolytic enzymes. The heparan sulfate was removed from perlecan by heparitinase treatment, and the ϳ450-kDa protein core was digested with various proteases. Plasmin digestion resulted in a large fragment of ϳ300 kDa, whereas stromelysin and rat collagenase cleaved the protein core into smaller fragments. All three proteases removed immunoreactivity toward the anti-domain I antibody. We showed also that perlecan bound bFGF specifically by the heparan sulfate chains located on the amino-terminal domain I. Once bound, the growth factor was released very efficiently by stromelysin, rat collagenase, plasmin, heparitinase I, platelet extract, and heparin. Interestingly, heparinase I, an enzyme with a substrate specificity for regions of heparan sulfate similar to those that bind bFGF, released only small amounts of bFGF. Our findings provide direct evidence that bFGF binds to heparan sulfate sequences attached to domain I and support the hypothesis that perlecan represents a major storage site for this growth factor in the blood vessel wall. Moreover, the concerted action of proteases that degrade the protein core and heparanases that remove the heparan sulfate may modulate the bioavailability of the growth factor.
Human bone marrow stem cells (hMSCs) have been shown to differentiate in vitro into a number of cell lineages and are a potential autologous cell source for the repair and replacement of damaged and diseased musculoskeletal tissues. hMSC differentiation into chondrocytes has been described in highdensity cell pellets cultured with specific growth and differentiation factors. We now describe how culture of hMSCs as a shallow multicellular layer on a permeable membrane over 2-4 weeks resulted in a much more efficient formation of cartilaginous tissue than in established chondrogenic assays. In this format, the hMSCs differentiated in 14 days to produce translucent, flexible discs, 6 mm in diameter by 0.8 -1 mm in thickness from 0.5 ؋ 10 6 cells. The discs contained an extensive cartilage-like extracellular matrix (ECM), with more than 50% greater proteoglycan content per cell than control hMSCs differentiated in standard cell pellet cultures. The disc constructs were also enriched in the cartilage-specific collagen II, and this was more homogeneously distributed than in cell pellet cultures. The expression of cartilage matrix genes for collagen type II and aggrecan was enhanced in disc cultures, but improved matrix production was not accompanied by increased expression of the transcription factors SOX9, L-SOX5, and SOX6. The fast continuous growth of cartilage ECM in these cultures up to 4 weeks appeared to result from the geometry of the construct and the efficient delivery of nutrients to the cells. Scaffold-free growth of cartilage in this format will provide a valuable experimental system for both experimental and potential clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.