Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.
Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with higher chemical activity at sites with lower activation energies. Here, we show how optical excitation of plasmons enables spatially modified phase transformations, activating otherwise energetically unfavorable sites. We have designed a crossed-bar Au-PdHx antenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdHx nanorod tips. Using optically coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including dehydrogenation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible through tailored plasmonic excitation.
Two methods to correlate and predict experimental redox potentials for cerium complexes were evaluated. Seventeen previously reported cerium complexes were computed using DFT methods in both the Ce and Ce oxidation states with a dichloromethane solvent continuum. In the first computational approach, the ΔG(Ce/Ce) was determined for each of the compounds and these values were correlated with the experimental E values measured in dichloromethane, referenced to the ferrocene/ferrocenium couple. The second method involved correlating the energies of the Ce LUMOs (lowest unoccupied molecular orbitals) with the experimental redox potentials, E. The predictive capabilities of these two correlative methods were tested using a new cerium hydroxylamine complex, Ce(ODiNOx) (ODiNOx = bis(2-tert-butylhydroxylaminatobenzyl) ether). All 18 complexes studied in this paper were combined with the 15 complexes determined in acetonitrile from a previously published correlation by our group. These sets of data allowed us to develop two methods for predicting the redox potential of cerium complexes regardless of the solvent for the experimental measurement.
Little is known about how evolved hydrogen affects the cycling of Li batteries. Hypotheses include the formation of LiH in the solid-electrolyte interphase (SEI) and dendritic growth of LiH. Here, we discover that LiH formation in Li batteries likely follows a different pathway: Hydrogen evolved during cycling reacts to nucleate and grow LiH within already deposited Li metal, consuming active Li. We provide the evidence that LiH formed in Li batteries electrically isolates active Li from the current collector that degrades battery capacity. We detect the coexistence of Li metal and LiH also on graphite and silicon anodes, showing that LiH forms in most Li battery anode chemistries. Last, we find that LiH has its own SEI layer that is chemically and structurally distinct from the SEI on Li metal. Our results highlight the formation mechanism and chemical origins of LiH, providing critical insight into how to prevent its formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.