Motivation
Genome-wide association studies (GWAS) summary statistics have popularised and accelerated genetic research. However, a lack of standardisation of the file formats used has proven problematic when running secondary analysis tools or performing meta-analysis studies.
Results
To address this issue, we have developed MungeSumstats, a Bioconductor R package for the standardisation and quality control of GWAS summary statistics. MungeSumstats can handle the most common summary statistic formats, including variant call format (VCF) producing a reformatted, standardised, tabular summary statistic file, VCF or R native data object.
Availability
MungeSumstats is available on Bioconductor (v 3.13) and can also be found on Github at: https://neurogenomics.github.io/MungeSumstats
Supplementary information
The analysis deriving the most common summary statistic formats is available at: https://al-murphy.github.io/SumstatFormats
Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput: datasets with over a million cells are becoming commonplace. The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods, led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data. The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities. Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users. We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.