The preemptive quality control (pQC) pathway protects cells from acute endoplasmic reticulum (ER) stress by attenuating translocation of nascent proteins despite their targeting to translocons at the ER membrane. Here, we investigate the hypothesis that the DnaJ protein p58 IPK plays an essential role in this process via HSP70 recruitment to the cytosolic face of translocons for extraction of translocationally attenuated nascent chains. Our analyses revealed that the heightened stress sensitivity of p58؊/؊ cells was not due to an impairment of the pQC pathway or elevated ER substrate burden during acute stress. Instead, the lesion was in the protein processing capacity of the ER lumen, where p58 IPK was found to normally reside in association with BiP. ER lumenal p58 IPK could be coimmunoprecipitated with a newly synthesized secretory protein in vitro and stimulated protein maturation upon overexpression in cells. These results identify a previously unanticipated location for p58 IPK in the ER lumen where its putative function as a cochaperone explains the stress-sensitivity phenotype of knockout cells and mice.
SUMMARY
The vertebrate protein STING, an intracellular sensor of cyclic dinucleotides, is critical to the innate immune response and the induction of type I interferon during pathogenic infection. Here, we show that a STING ortholog (dmSTING) exists in Drosophila, which, similar to vertebrate STING, associates with cyclic dinucleotides to initiate an innate immune response. Following infection with Listeria monocytogenes, dmSTING activates an innate immune response via activation of the NF-κB transcription factor Relish, part of the immune deficiency (IMD) pathway. DmSTING-mediated activation of the immune response reduces the levels of Listeria-induced lethality and bacterial load in the host. Of significance, dmSTING triggers an innate immune response in the absence of a known functional cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) ortholog in the fly. Together, our results demonstrate that STING is an evolutionarily conserved antimicrobial effector between flies and mammals, and it comprises a key component of host defense against pathogenic infection in Drosophila.
The ER's capacity to process proteins is limited, and stress caused by accumulation of unfolded and misfolded proteins (ER stress) contributes to human disease. ER stress elicits the unfolded protein response (UPR), whose components attenuate protein synthesis, increase folding capacity, and enhance misfolded protein degradation. Here, we report that P58 IPK /DNAJC3, a UPR-responsive gene previously implicated in translational control, encodes a cytosolic cochaperone that associates with the ER protein translocation channel Sec61. P58 IPK recruits HSP70 chaperones to the cytosolic face of Sec61 and can be crosslinked to proteins entering the ER that are delayed at the translocon. Proteasome-mediated cytosolic degradation of translocating proteins delayed at Sec61 is cochaperone dependent. In P58 IPKÀ/À mice, cells with a high secretory burden are markedly compromised in their ability to cope with ER stress. Thus, P58 IPK is a key mediator of cotranslocational ER protein degradation, and this process likely contributes to ER homeostasis in stressed cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.