Objective To investigate change in mental health after smoking cessation compared with continuing to smoke.Design Systematic review and meta-analysis of observational studies.Data sources Web of Science, Cochrane Central Register of Controlled Trials, Medline, Embase, and PsycINFO for relevant studies from inception to April 2012. Reference lists of included studies were hand searched, and authors were contacted when insufficient data were reported.Eligibility criteria for selecting studies Longitudinal studies of adults that assessed mental health before smoking cessation and at least six weeks after cessation or baseline in healthy and clinical populations.Results 26 studies that assessed mental health with questionnaires designed to measure anxiety, depression, mixed anxiety and depression, psychological quality of life, positive affect, and stress were included. Follow-up mental health scores were measured between seven weeks and nine years after baseline. Anxiety, depression, mixed anxiety and depression, and stress significantly decreased between baseline and follow-up in quitters compared with continuing smokers: the standardised mean differences (95% confidence intervals) were anxiety −0.37 (95% confidence interval −0.70 to −0.03); depression −0.25 (−0.37 to −0.12); mixed anxiety and depression −0.31 (−0.47 to −0.14); stress −0.27 (−0.40 to −0.13). Both psychological quality of life and positive affect significantly increased between baseline and follow-up in quitters compared with continuing smokers 0.22 (0.09 to 0.36) and 0.40 (0.09 to 0.71), respectively). There was no evidence that the effect size differed between the general population and populations with physical or psychiatric disorders. ConclusionsSmoking cessation is associated with reduced depression, anxiety, and stress and improved positive mood and quality of life compared with continuing to smoke. The effect size seems as large for those with psychiatric disorders as those without. The effect sizes are equal or larger than those of antidepressant treatment for mood and anxiety disorders.
This report presents the Consolidated Standards of Reporting Trials (CONSORT) extension for the stepped wedge cluster randomised trial (SW-CRT). The SW-CRT involves randomisation of clusters to different sequences that dictate the order (or timing) at which each cluster will switch to the intervention condition. The statement was developed to allow for the unique characteristics of this increasingly used study design. The guideline was developed using a Delphi survey and consensus meeting; and is informed by the CONSORT statements for individual and cluster randomised trials. Reporting items along with explanations and examples are provided. We include a glossary of terms, and explore the key properties of the SW-CRT which require special consideration in their reporting.
In stepped cluster designs the intervention is introduced into some (or all) clusters at different times and persists until the end of the study. Instances include traditional parallel cluster designs and the more recent stepped‐wedge designs. We consider the precision offered by such designs under mixed‐effects models with fixed time and random subject and cluster effects (including interactions with time), and explore the optimal choice of uptake times. The results apply both to cross‐sectional studies where new subjects are observed at each time‐point, and longitudinal studies with repeat observations on the same subjects.The efficiency of the design is expressed in terms of a ‘cluster‐mean correlation’ which carries information about the dependency‐structure of the data, and two design coefficients which reflect the pattern of uptake‐times. In cross‐sectional studies the cluster‐mean correlation combines information about the cluster‐size and the intra‐cluster correlation coefficient. A formula is given for the ‘design effect’ in both cross‐sectional and longitudinal studies.An algorithm for optimising the choice of uptake times is described and specific results obtained for the best balanced stepped designs. In large studies we show that the best design is a hybrid mixture of parallel and stepped‐wedge components, with the proportion of stepped wedge clusters equal to the cluster‐mean correlation. The impact of prior uncertainty in the cluster‐mean correlation is considered by simulation. Some specific hybrid designs are proposed for consideration when the cluster‐mean correlation cannot be reliably estimated, using a minimax principle to ensure acceptable performance across the whole range of unknown values. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Stepped-wedge cluster randomised trials (SW-CRTs) are being used with increasing frequency in health service evaluation. Conventionally, these studies are cross-sectional in design with equally spaced steps, with an equal number of clusters randomised at each step and data collected at each and every step. Here we introduce several variations on this design and consider implications for power.One modification we consider is the incomplete cross-sectional SW-CRT, where the number of clusters varies at each step or where at some steps, for example, implementation or transition periods, data are not collected. We show that the parallel CRT with staggered but balanced randomisation can be considered a special case of the incomplete SW-CRT. As too can the parallel CRT with baseline measures. And we extend these designs to allow for multiple layers of clustering, for example, wards within a hospital. Building on results for complete designs, power and detectable difference are derived using a Wald test and obtaining the variance–covariance matrix of the treatment effect assuming a generalised linear mixed model. These variations are illustrated by several real examples.We recommend that whilst the impact of transition periods on power is likely to be small, where they are a feature of the design they should be incorporated. We also show examples in which the power of a SW-CRT increases as the intra-cluster correlation (ICC) increases and demonstrate that the impact of the ICC is likely to be smaller in a SW-CRT compared with a parallel CRT, especially where there are multiple levels of clustering. Finally, through this unified framework, the efficiency of the SW-CRT and the parallel CRT can be compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.