BackgroundGait is emerging as a powerful diagnostic and prognostic tool, and as a surrogate marker of disease progression for Parkinson’s disease (PD). Accelerometer-based body worn monitors (BWMs) facilitate the measurement of gait in clinical environments. Moreover they have the potential to provide a more accurate reflection of gait in the home during habitual behaviours. Emerging research suggests that measurement of gait using BWMs is feasible but this has not been investigated in depth. The aims of this study were to explore (i) the impact of environment and (ii) ambulatory bout (AB) length on gait characteristics for discriminating between people with PD and age-matched controls.MethodsFourteen clinically relevant gait characteristics organised in five domains (pace, variability, rhythm, asymmetry, postural control) were quantified using laboratory based and free-living data collected over 7 days using a BWM placed on the lower back in 47 PD participants and 50 controls.ResultsFree-living data showed that both groups walked with decreased pace and increased variability, rhythm and asymmetry compared to walking in the laboratory setting. Four of the 14 gait characteristics measured in free-living conditions were significantly different between controls and people with PD compared to two measured in the laboratory. Between group differences depended on bout length and were more apparent during longer ABs. ABs ≤ 10s did not discriminate between groups. Medium to long ABs highlighted between-group significant differences for pace, rhythm and asymmetry. Longer ABs should therefore be taken into account when evaluating gait characteristics in free-living conditions.ConclusionThis study provides encouraging results to support the use of a single BWM for free-living gait evaluation in people with PD with potential for research and clinical application.
Measurement of gait is becoming important as a tool to identify disease and disease progression, yet to date its application is limited largely to specialist centers. Wearable devices enables gait to be measured in naturalistic environments, however questions remain regarding validity. Previous research suggests that when compared with a laboratory reference, measurement accuracy is acceptable for mean but not variability or asymmetry gait characteristics. Some fundamental reasons for this have been presented, (e.g., synchronization, different sampling frequencies) but to date this has not been systematically examined. The aims of this study were to: 1) quantify a comprehensive range of gait characteristics measured using a single triaxial accelerometer-based monitor; 2) examine outcomes and monitor performance in measuring gait in older adults and those with Parkinson's disease (PD); and 3) carry out a detailed comparison with those derived from an instrumented walkway to account for any discrepancies. Fourteen gait characteristics were quantified in 30 people with incident PD and 30 healthy age-matched controls. Of the 14 gait characteristics compared, agreement between instruments was excellent for four (ICCs 0.913-0.983); moderate for four (ICCs 0.508-0.766); and poor for six characteristics (ICCs 0.637-0.370). Further analysis revealed that differences reflect an increased sensitivity of accelerometry to detect motion, rather than measurement error. This is most likely because accelerometry measures gait as a continuous activity rather than discrete footfall events, per instrumented tools. The increased sensitivity shown for these characteristics will be of particular interest to researchers keen to interpret "real-world" gait data. In conclusion, use of a body-worn monitor is recommended for the measurement of gait but is likely to yield more sensitive data for asymmetry and variability features.
Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.