We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to generalized versions of Super Mario Bros. 1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokémon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games.
We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to generalized versions of Super Mario Bros. 1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokémon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games.
Objectives Peripheral blood flow cytometry (PBFC) is useful for evaluating circulating hematologic malignancies (HM) but has limited diagnostic value for screening. We used machine learning to evaluate whether clinical history and CBC/differential parameters could improve PBFC utilization. Methods PBFC cases with concurrent/recent CBC/differential were split into training (n = 626) and test (n = 159) cohorts. We classified PBFC results with abnormal blast/lymphoid populations as positive and used two models to predict results. Results Positive PBFC results were seen in 58% and 21% of training cases with and without prior HM (P < .001). % neutrophils, absolute lymphocyte count, and % blasts/other cells differed significantly between positive and negative PBFC groups (areas under the curve [AUC] > 0.7). Among test cases, a decision tree model achieved 98% sensitivity and 65% specificity (AUC = 0.906). A logistic regression model achieved 100% sensitivity and 54% specificity (AUC = 0.919). Conclusions We outline machine learning-based triaging strategies to decrease unnecessary utilization of PBFC by 35% to 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.