Fungi are known to have an important role in the composting process as degraders of recalcitrant materials such as cellulose and lignin. Previous attempts to study the diversity and succession of fungi in compost systems have relied on the use of culture-dependent analyses and low-resolution DNA-fingerprinting techniques, lacking the necessary depth to analyse such a rich ecosystem. In this study, 454 pyrosequencing was used to characterize the fungal community composition at the different stages of an in-vessel composting process. A complex succession of fungi was revealed, with 251 fungal OTUs identified throughout the monitoring period. The Ascomycota were the dominant phylum (82.5% of all sequences recovered), followed by the Basidiomycota (10.4%) and the subphylum Mucoromycotina (4.9%). In the starting materials and early stages of the process, yeast species from the Saccharomycetales were abundant, while in latter stages and in the high temperature regions of the pile, fungi from the orders Eurotiales, Sordariales, Mucorales, Agaricales and Microascales were the most prominent. This study provides an improved understanding of the fungal diversity occurring during the composting of municipal solid waste, and this knowledge can lead to the development of more efficient composting practices and a better evaluation of the end-product quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.