Brain injury induced by fluid percussion in rats caused a marked elevation in extracellular glutamate and aspartate adjacent to the trauma site. This increase in excitatory amino acids was related to the severity of the injury and was associated with a reduction in cellular bioenergetic state and intracellular free magnesium. Treatment with the noncompetitive N-methyl-D-aspartate (NMDA) antagonist dextrophan or the competitive antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid limited the resultant neurological dysfunction; dextrorphan treatment also improved the bioenergetic state after trauma and increased the intracellular free magnesium. Thus, excitatory amino acids contribute to delayed tissue damage after brain trauma; NMDA antagonists may be of benefit in treating acute head injury.
Recent clinical studies indicate that traumatic brain injury (TBI) produces chronic and progressive neurodegenerative changes leading to late neurological dysfunction but little is known about the mechanisms underlying such changes. Microglial-mediated neuroinflammation is an important secondary injury mechanism after TBI. In human studies, microglial activation has been found to persist for many years after the initial brain trauma, particularly after moderate-to-severe TBI. In the present study, adult C57Bl/6 mice were subjected to single moderate-level controlled cortical impact and were followed up by longitudinal T2-weighted magnetic resonance imaging in combination with stereological histological assessment of lesion volume expansion, neuronal loss and microglial activation for up to 1 year after TBI. Persistent microglial activation was observed in the injured cortex through 1 year post-injury, and was associated with progressive lesion expansion, hippocampal neurodegeneration, and loss of myelin. Notably, highly activated microglia that expressed major histocompatibility complex class II (CR3/43), CD68 and NADPH oxidase (NOX2) were detected at the margins of the expanding lesion at 1 year post-injury; biochemical markers of neuroinflammation and oxidative stress were significantly elevated at this time point. These data support emerging clinical TBI findings and provide a mechanistic link between TBI-induced chronic microglial activation and progressive neurodegeneration.
We examined the temporal profile of apoptosis after fluid percussion-induced traumatic brain injury (TBI) in rats and investigated the potential pathophysiological role of caspase-3-like proteases in this process. DNA fragmentation was observed in samples from injured cortex and hippocampus, but not from contralateral tissue, beginning 4 hr after TBI and continuing for at least 3 d. Double labeling of brain with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and an antibody directed to neuronal nuclear protein identified apoptotic neurons with high frequency in both traumatized rat cortex and hippocampus. Cytosolic extracts from injured cortex and hippocampus, but not from contralateral or control tissue, induced internucleosomal DNA fragmentation in isolated nuclei with temporal profiles consistent with those of DNA fragmentation observed in vivo. Caspase-3 mRNA levels, estimated by semiquantitative RT-PCR, were elevated fivefold in ipsilateral cortex and twofold in hippocampus by 24 hr after TBI. Caspase-1 mRNA content also was increased after trauma, but to a lesser extent in cortex. Increased caspase-3-like, but not caspase-1-like, enzymatic activity was found in cytosolic extracts from injured cortex. Intracerebroventricular administration of z-DEVD-fmk-a specific tetrapeptide inhibitor of caspase-3-before and after injury markedly reduced post-traumatic apoptosis, as demonstrated by DNA electrophoresis and TUNEL staining, and significantly improved neurological recovery. Together, these results implicate caspase-3-like proteases in neuronal apoptosis induced by TBI and suggest that the blockade of such caspases can reduce post-traumatic apoptosis and associated neurological dysfunction.
Traumatic brain injury (TBI) causes secondary biochemical changes that contribute to subsequent tissue damage and associated neuronal cell death. Neuroprotective treatments that limit secondary tissue loss and/or improve behavioral outcome have been well established in multiple animal models of TBI. However, translation of such neuroprotective strategies to human injury have been disappointing, with more than thirty controlled clinical trials having failed. Both conceptual issues and methodological differences between preclinical and clinical injury have undoubtedly contributed to these translational difficulties. More recently, changes in experimental approach, as well as altered clinical trial methodologies, have raised cautious optimism regarding outcomes of future clinical trials. Here, we critically review developing experimental neuroprotective strategies that show promise and propose criteria for improving the probability of successful clinical translation.
Traumatic brain injury (TBI) causes neuronal apoptosis, inflammation, and reactive astrogliosis, which contribute to secondary tissue loss, impaired regeneration, and associated functional disabilities. Here, we show that up-regulation of cell cycle components is associated with caspase-mediated neuronal apoptosis and glial proliferation after TBI in rats. In primary neuronal and astrocyte cultures, cell cycle inhibition (including the cyclin-dependent kinase inhibitors flavopiridol, roscovitine, and olomoucine) reduced upregulation of cell cycle proteins, limited neuronal cell death after etoposide-induced DNA damage, and attenuated astrocyte proliferation. After TBI in rats, flavopiridol reduced cyclin D1 expression in neurons and glia in ipsilateral cortex and hippocampus. Treatment also decreased neuronal cell death and lesion volume, reduced astroglial scar formation and microglial activation, and improved motor and cognitive recovery. The ability of cell cycle inhibition to decrease both neuronal cell death and reactive gliosis after experimental TBI suggests that this treatment approach may be useful clinically.flavopiridol ͉ glial scar ͉ neuron ͉ trauma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.