The oligomeric nature of the purified lamb kidney Na+,K(+)-ATPase was investigated by measuring the fluorescence energy transfer between catalytic (alpha) subunits following sequential labeling with fluorescein 5'-isothiocyanate (FITC) and erythrosin 5'-isothiocyanate (ErITC). Although these two probes had different spectral responses upon reaction with the enzyme, our studies suggest that a sizeable proportion of their binding occurs at the same ATP protectable, active site domain of alpha. Fluorescence energy transfer (FET) from donor (FITC) to acceptor (ErITC) revealed an apparent 56 A distance between the putative ATP binding sites of alpha subunits, which is consistent with (alpha beta)2 dimers rather than randomly spaced alpha beta heteromonomers. In this work, methods were introduced to eliminate the contribution of nonspecific probe labeling to FET values and to determine the most probable orientation factor (K2) for these rigidly bound fluorophores. FET measurements between anthroylouabain/ErITC, 5'-iodoacetamide fluorescein (5'IAF)/ErITC, and TNP-ATP/FITC, donor/acceptor pairs were also made. Interestingly, none of these distances were affected by ligand-dependent changes in enzyme conformation. These results and those from electron microscopy imaging (Ting-Beall et al. 1990. FEBS Lett. 265:121) suggest a model in which ATP binding sites of (alpha beta)2 dimers are 56 A apart, and reside 30 A from the intracellular surface of the membrane contiguous with the phosphorylation domain.
Fluorescein 5'-isothiocyanate (FITC) covalently modifies the Lys-501 residue of the catalytic (alpha) subunit of Na+,K(+)-ATPase and resides at a conformation-sensitive site in or near the ATP binding site. In these studies, FITC-directed antibodies which quench this hapten's fluorescence were used to infer the solvent accessibility of the enzyme-bound probe. These antibodies identified two FITC labeling populations. An antibody-accessible population, representing 20-50% of the bound FITC fluorescence, was essentially (95%) quenched by the antibody. The second population was irreversibly labeled, was inaccessible to antibody, and was the fraction of probe whose fluorescence intensity is sensitive to the enzyme's conformation. The anti-FITC antibodies therefore permitted the selective investigation of FITC at this active site. Distinct differences between the two labeling sites were then demonstrated. Shifts in the absorption spectrum suggested that the active-site-bound probe resides in a hydrophobic environment, while polarization values indicated a rigid, rotationally restricted location. These two properties were not altered by ligand additions. Iodide quenching studies, however, showed that in the E1Na+ conformation there was a 50% decrease in solvent access to the active-site-bound probe as compared to free probe while the E1Na(+)----E2K+ transition decreased this accessibility an additional 50%. Similarly, there was a significant decrease in the relative quantum yield of FITC linked at this site that was reduced further by the E1Na(+)----E2K+ transition. In contrast, frequency domain spectroscopy showed no significant differences in the lifetimes of fluorescence decay for the two different labeling populations nor for the high (E1Na+) and low (E2K+) fluorescence intensity conformations. We have found that static (lifetime independent) quenching rather than collisional processes or protonation changes accounts for the fluorescence intensity changes undergone by FITC bound at the ATP-protectable site.
Vesicle size can be a very sensitive modulator of protein-membrane association. In addition, reactions at the collisional limit may be characteristic of many types of protein-membrane or protein-receptor interactions. To probe these effects quantitatively, we analyzed the association of blood clotting factor Va light chain (Va-LC) with phospholipid vesicles of 15-150-nm radius. The number of protein binding sites per vesicle was approximately proportional to vesicle surface area. Association rates approached the collisional limit, and the activation energy for the association reaction was 4.5 +/- 0.5 kcal/mol. In agreement with diffusional theory for this type of interaction at the collisional limit, the observed association rate constant for filling all sites was approximately proportional to the inverse of vesicle radius. This general property has important implications for many systems such as blood coagulation including possible slower association rates and higher Km values for reactions involving whole cells relative to those obtained for phospholipid vesicles. Dissociation rate constants for reactions that are near the collisional limit should also be proportional to the inverse of vesicle size if diffusional parameters are the only factors influencing dissociation. However, Va-LC bound to small unilamellar vesicles (SUVs, less than or equal to 15-nm radius) gave slower dissociation rates than Va-LC bound to large unilamellar vesicles (LUVs, greater than or equal to 35-nm radius). This indicated a change in KI, the intrinsic protein-phospholipid affinity constant for LUVs vs SUVs. The cumulative effect of association and dissociation rates resulted in higher affinity of Va-LC for SUVs than LUVs under equilibrium conditions. The latter was corroborated by competition binding studies. Furthermore, the temperature dependence of both rate constants indicated an entirely entropy-driven binding to LUVs but a largely enthalpy-driven binding to SUVs. Interactions which are largely entropic are thought to be ionic in nature. The differences observed between binding to LUVs and SUVs may reflect thermodynamic differences between these types of phospholipid structures.
Because of the proximity of many bound receptors or enzymes, a membrane surface may become uniformly reactive so that every collision between a ligand and the membrane particle results in a binding or catalytic event. At this limit (the collisional limit), the reaction rate depends on membrane particle (cell) concentration and is independent of receptor concentration. Many receptor systems display properties that satisfy the requirements of a collisionally limited reaction. These include the presence of many receptors per cell. The filling of only a few of these receptors often generates the maximum cellular response, and the remaining receptors have been referred to as spare receptors. However, many receptors are needed to produce the collisional limit, and spare receptors may represent nature's evolution toward a reaction that provides the maximum rate as well as the maximum sensitivity to a ligand. Since receptors or enzymes provided on small membrane fragments will not function at the collisional limit, properties of reconstituted enzymes or receptors may not be extrapolated to the physiological situation. The use of normal bimolecular kinetic or equilibrium equations is inappropriate for reactions limited by collision and can give unusual results that lead to inappropriate conclusions. Determination of whether the collisional limit applies to a membrane-bound system is important for understanding its properties and those of the physiological circumstance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.