The exact nature of tripuhyite remains controversial more than 100 years after the first description of the mineral. Different stoichiometries and crystal structures (rutile or tri-rutile types) have been suggested for this Fe-Sb-oxide. To address these uncertainties, we studied tripuhyite from Tripuhy, Minas Gerais, Brazil (type material) and Falotta, Grisons, Switzerland using single-crystal and powder X-ray diffraction (XRD), optical microscopy and electron microprobe analysis.Electron microprobe analyses showed the Fe/Sb ratios to be close to one in tripuhyite from both localities. Single crystal XRD studies revealed that tripuhyite from the type locality and from Falotta have the rutile structure (P4 2 /mnm, a = 4.625(4) c = 3.059(5) and a = 4.6433(10) c = 3.0815(9) A Ê , respectively). Despite careful examination, no evidence for a tripled c parameter, characteristic of the tri-rutile structure, was found and hence the structure was refined with the rutile model and complete Fe-Sb disorder over the cationic sites in both cases (type material: R 1 = 3.61%; Falotta material: R 1 = 3.96%). The specular reflectance values of type material tripuhyite and lewisite were measured and the following refractive indices calculated (after Koenigsberger): tripuhyite n min = 2.14, n max = 2.27; lewisite (cubic) n = 2.04.These results, together with those of 57 Fe and 121 Sb Mössbauer spectroscopy on natural and synthetic tripuhyites reported in the literature, indicate that the chemical formula of tripuhyite is Fe 3+ Sb 5+ O 4 (FeSbO 4 ). Thus, tripuhyite can no longer be attributed to the tapiolite group of minerals of general type AB 2 O 6 . A comparison of the results presented with the mineralogical data of squawcreekite suggests that tripuhyite and squawcreekite are identical. In consequence, tripuhyite was redefined as Fe 3+ Sb 5+ O 4 with a rutile-type structure. Both the proposed new formula and unit cell (rutile-type) of tripuhyite as well as the discreditation of squawcreekite have been approved by the Commission on New Mineral and Mineral Names (CNMMN) of the International Mineralogical Association (IMA).
Precious and base metal selenide minerals have been identified in gold-bearing carbonate veins cutting Middle Devonian limestones of the Torquay Limestone Group at Hope's Nose, Torquay. The selenide assemblage consists of clausthalite (PbSe), tiemannite (HgSe), klockmannite (CuSe), umangite (Cu3Se2), tyrrellite (Cu,Co,Ni)3Se4, trustedtite (Ni3Se4), penroseite (NiSe2), naumannite (AgzSe), eucairite (AgCuSe) and fischesserite (Ag3AuSe2), only clausthalite having previously been reported from Britain. They are associated with palladian g01d, gold, hematite, and accessory pyrite and chalcopyrite in a gangue consisting predominantly of calcite; alteration products include cerussite, malachite, aragonite and goethite.The relative abundance of Au, Ag, Hg and Se is a characteristic feature in the uppermost parts of some precious metal 'epithermal' systems. The occurrence at Hope's Nose is related to both structural and lithological factors: a deep-seated NW-SE structural lineament, the Lundy-Sticklepath-Lustleigh-Torquay fault; local thrusting, and to an association of basic-intermediate igneous rocks with a sedimentary sequence including carbonaceous shales and limestones. The mineralization is considered to be post-Variscan, probably Permo-Triassic in age.
Chrisstanleyite, Ag2Pd3Se4, is a new mineral from gold-bearing carbonate veins in Middle Devonian limestones at Hope's Nose, Torquay, Devon, England. It is associated with palladian and argentian gold, fischesserite, clausthalite, eucairite, tiemannite, umangite, a Pd arsenide-antimonide (possibly mertieite II), cerussite, calcite and bromian chlorargyrite. Also present in the assemblage is a phase similar to oosterboschite, and two unknown minerals with the compositions, PdSe2 and HgPd2Se3. Chrisstanleyite occurs as composite grains of anhedral crystals ranging from a few µm to several hundred µm in size. It is opaque, has a metallic lustre and a black streak, VHN100 ranges from 371–421, mean 395 kp/mm2 (15 indentations), roughly approximating to a Mohs hardness of 5. Dcalc = 8.308 g/cm3 for the ideal formula with Z = 2. In plane-polarised reflected light, the mineral is very slightly pleochroic from very light buff to slightly grey-green buff; is weakly bireflectant and has no internal reflections. Bireflectance is weak to moderate (higher in oil). Anisotropy is moderate and rotation tints vary from rose-brown to grey-green to pale bluish grey to dark steel-blue. Polysynthetic twinning is characteristic of the mineral. Reflectance spectra and colour values are tabulated. Very little variation was noted in eleven electron-microprobe analyses on five grains, the mean is: Ag 25.3, Cu 0.17, Pd 37.5, Se 36.4, total 99.37 wt.%. The empirical formula (on the basis of ∑M + Se = 9) is (Ag2.01Cu0.02)∑2.03 Pd3.02Se3.95, ideally Ag2Pd3Se4. Chrisstanleyite is monoclinic, a 6.350(6), b 10.387(4), c 5.683(3) Å β 114.90(5)°, space group P21/m (11) or P21(4). The five strongest X-ray powder-diffraction lines [d in Å (I)(hkl)] are: 2.742 (100) (–121), 2.688 (80) (–221), 2.367 (50) (140), 1.956 (100) (–321,150) and 1.829 (30) (–321, 042). The name is in honour of Dr Chris J. Stanley of The Natural History Museum in London. The mineral and its name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.