Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.
Fibrin is a promising matrix for use in promoting nerve repair given its natural occurrence in peripheral nerve injuries, and the biophysical properties of this matrix can be regulated to modulate tissue regeneration. In this study, we examined the effect of physical and mechanical properties of fibrin gels on dorsal root ganglia (DRG) neurite extension. Increases in fibrinogen concentration increased the number of fibrin strands, resulting in decreased pore size and increased stiffness. Neurite extension was reduced when DRG explants were cultured within fibrin gels of increasing fibrinogen concentrations (from 9.5 to 141 mg/mL). The addition of NaCl also increased the number of fibrin strands, reducing fiber diameter and porosity, while increasing mechanical strength, and reductions in neurite extension correlated with increases in NaCl content. We determined that neurite extension within fibrin gels is dependent on fibrinolysis and is mediated by the secretion of serine proteases and matrix metalloproteinases by entrapped DRGs, as confirmed by culturing cells in the presence of inhibitors against these enzymes and real-time-polymerase chain reaction. Taken together, the results of this study provide new insight into the effect of fibrin gel biophysical properties on neurite extension and suggest new opportunities to improve the efficacy of these materials when used as nerve guidance conduits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.