The purpose of this work is to develop accurate computational methods to comprehensively characterize and model the clinical ExacTrac imaging system, which is used as an image guidance system for stereotactic treatment applications. The Spektr toolkit was utilized to simulate the spectral and imaging characterization of the system. Since Spektr only simulates the primary beam (ignoring scatter), a full model of ExacTrac was also developed in Monte Carlo (MC) to characterize the imaging system. To ensure proper performance of both simulation models, Spektr and MC data were compared to the measured spectral and half value layers (HVLs) values. To validate the simulation results, x-ray spectra of the ExacTrac system were measured for various tube potentials using a CdTe spectrometer with multiple added narrow collimators. The raw spectra were calibrated using a 57Co source and corrected for the escape peaks and detector efficiency. HVLs in mm of Al for various energies were measured using a calibrated RaySafe detector. Spektr and MC HVLs were calculated and compared to the measured values. The patient surface dose was calculated for different clinical imaging protocols from the measured air kerma and HVL values following the TG-61 methodology. The x-ray focal spot was measured by slanted edge technique using gafchromic films. ExacTrac imaging system beam profiles were simulated for various energies by MC simulation and the results were benchmarked by experimentally acquired beam profiles using gafchromic films. The effect of 6D IGRT treatment couch on beam hardening, dynamic range of the flat panel detector and scatter effect were determined using both Spektr simulation and experimental measurements. The measured and simulated spectra (of both MC and Spektr) for various kVps were compared and agreed within acceptable error. As another validation, the measured HVLs agreed with the Spektr and MC simulated HVLs on average within 1.0% for all kVps. The maximum and minimum patient surface doses were found to be 1.06 mGy for shoulder (high) and 0.051 mGy for cranial (low) imaging protocols, respectively. The MC simulated beam profiles were well matched with experimental results and replicated the penumbral slopes, the heel effect, and out-of-field regions. Dynamic range of detector (in terms of air kerma at detector surface) was found to be in the range of [6.1 × 10−6, 5.3 × 10−3] mGy. Accurate MC and Spektr models of the ExacTrac image guidance system were successfully developed and benchmarked via experimental validation. While patient surface dose for available imaging protocols were reported in this study, the established MC model may be used to obtain 3D imaging dose distribution for real patient geometries.
Purpose: The purpose of this work is to quantify the dependence of patient-specific imaging dose on patient-size from ExacTrac stereoscopic/monoscopic real-time tumor monitoring during lung and prostate stereotactic body radiotherapy (SBRT). 
Approach: Thirty lung and 30 prostate SBRT patients that were treated with volumetric modulated arc therapy (VMAT) were selected and divided into three patient size categories. Imaging doses from all SBRT fractions were calculated retrospectively assuming patients went through real-time tumor monitoring during their actual VMAT treatment times. Treatment times were divided into periods of stereoscopic and monoscopic real-time imaging depending on the imaging view with linac gantry blockage. The computed tomography (CT) images and contours of the planning target volume (PTV) and organs at risk (OARs) were exported from the treatment planning system. Based on the CT data, patient-specific 3D imaging dose distributions were calculated in a validated Monte Carlo (MC) model using DOSEXYZnrc. Vendor-recommended imaging protocols (lung: 120-140 kV, 16-25 mAs; prostate: 110-130 kV, 25 mAs) were used for each patient size category. Patient-specific imaging doses received by PTV and OARs were evaluated using dose volume histograms, dose delivered to 50% of organ volume (D50), and 2% of organ volume (D2). 
Results: Bone and skin received the highest imaging dose. For the lung patients, the highest D2 for bone and skin were 4.30% and 1.98% of the prescription dose respectively. For prostate patients, the highest D2 were 2.53% and 1.35% of the prescription for bone and skin. Additional imaging dose to PTV as a percentage of the prescribed dose was at most 2.42% for lung and 0.29% for prostate patients. T-test results showed statistically significant difference in D2 and D50 between at least two patient size categories for PTVs and all the OARs. Larger patients received more skin dose in both lung and prostate patients. For the internal OARs, larger patients received more dose in lung treatment while the trend was opposite in prostate treatment. 
Conclusion: Patient-specific imaging dose was quantified for monoscopic/stereoscopic real-time kV image guidance in lung and prostate patients with respect to patient size. Additional skin dose was 1.98% (in lung patients) and 1.35% (in prostate patients) of the prescription which is within 5% recommended value by the AAPM Task Group 180. For internal OARs, larger patients received more dose in lung patients while the trend was the opposite for prostate patients. Patient size was an important factor to determine additional imaging dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.