In this paper, numerical simulations of the scattering from time‐dependent realizations of one‐dimensional ocean surface waves are described. A new technique is used that allows efficient generation of ocean surface realizations that preserve the dominant nonlinear hydrodynamic characteristics. Thus unique scattering effects of real ocean surface waves can be explored. Until very recently, numerical simulations of rough‐surface scattering were used mainly to test and/or improve theoretical models that predict the average bistatic scatter cross section. We carry the simulations further by generating Doppler spectra from dynamically evolving surface realizations. Doppler spectra of signals scattered from the ocean surface are affected by both hydrodynamic nonlinearities and higher‐order scatter terms. The simulated Doppler spectra from nonlinear surface realizations reproduce the measured characteristics of ocean and wave‐tank data for low and high wind conditions. We also show that the results are essentially reproduced by the second‐order Kirchhoff approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.