The crystal structure of the tryptic core fragment of the lac repressor of Escherichia coli (LacR) complexed with the inducer isopropyl-beta-D-thiogalactoside was determined at 2.6 A resolution. The quaternary structure consists of two dyad-symmetric dimers that are nearly parallel to each other. This structure places all four DNA binding domains of intact LacR on the same side of the tetramer, and results in a deep, V-shaped cleft between the two dimers. Each monomer contributes a carboxyl-terminal helix to an antiparallel four-helix bundle that functions as a tetramerization domain. Some of the side chains whose mutation reduce DNA binding form clusters on a surface near the amino terminus. Placing the structure of the DNA binding domain complexed with operator previously determined by nuclear magnetic resonance onto this surface results in two operators being adjacent and nearly parallel to each other. Structural considerations suggest that the two dimers of LacR may flexibly alter their relative orientation in order to bind to the known varied spacings between two operators.
The single-stranded DNA (ssDNA) binding protein gp32 from bacteriophage T4 is essential for T4 DNA replication, recombination and repair. In vivo gp32 binds ssDNA as the replication fork advances and stimulates replisome processivity and accuracy by a factor of several hundred. Gp32 binding affects nearly every major aspect of DNA metabolism. Among its important functions are: (1) configuring ssDNA templates for efficient use by the replisome including DNA polymerase; (2) melting out adventitious secondary structures; (3) protecting exposed ssDNA from nucleases; and (4) facilitating homologous recombination by binding ssDNA during strand displacement. We have determined the crystal structure of the gp32 DNA binding domain complexed to ssDNA at 2.2 A resolution. The ssDNA binding cleft comprises regions from three structural subdomains and includes a positively charged surface that runs parallel to a series of hydrophobic pockets formed by clusters of aromatic side chains. Although only weak electron density is seen for the ssDNA, it indicates that the phosphate backbone contacts an electropositive cleft of the protein, placing the bases in contact with the hydrophobic pockets. The DNA mobility implied by the weak electron density may reflect the role of gp32 as a sequence-independent ssDNA chaperone allowing the largely unstructured ssDNA to slide freely through the cleft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.