10As the world's largest distributed store of freshwater, groundwater plays a central role in 11 sustaining ecosystems and enabling human adaptation to climate variability and change. 12The strategic importance of groundwater to global water and food security will intensify 13 under climate change as more frequent and intense climate extremes (droughts, floods) 14 increase variability in soil moisture and surface water. Here we critically review recent 15 research assessing climate impacts on groundwater through natural and human-induced 16 processes as well as groundwater-driven feedbacks on the climate system.
In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km 3 (0.36-1.75 million km 3 ). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1-0.3 l s −1 ), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes (>5 l s −1 ) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level.
As one article in a four-part PLoS Medicine series on water and sanitation, Paul Hunter and colleagues argue that much more effort is needed to improve access to safe and sustainable water supplies.
across the full extent of the IGB. The aquifer system is usually represented as a single category on 66 hydrogeological maps [6]. However, in practice the system is complex and heterogeneous with large 67 spatial differences in permeability, storage, recharge and water chemistry as well as having an 68 important depth dimension. This complexity strongly influences how each part of the aquifer 69 responds to stresses [7]. The IGB is home to the largest surface water irrigation system in the world, 70 constructed during the 19 th and early 20th century to redistribute water from the Indus and Ganges 71 through a canal network >100,000 km long. Leakage from this irrigation infrastructure has had a 72 profound impact on the current quantity and quality of groundwater resources and is a significant 73 factor governing its response to contemporary and future pressures. Increasing groundwater use for 74 irrigation poses legitimate questions about the future sustainability of abstraction from the basin 75 and future groundwater security of this region is a major social-political concern [8]. 76Recent discussion of water security has been dominated by interpretations of remotely-sensed 77 gravity data from the GRACE mission gathered at a coarse scale of 400x400 km are poorly constrained by ground-based observations; local field studies nonetheless provide partial 82 insight into system dynamics. These include evidence of: declining groundwater levels [11,12,13], 83 groundwater security has been introduced by forecasts of climate change and the potential for 88 significant change to precipitation, river flows and groundwater recharge [20,21,22]. 89Here we present for the first time an analysis of the status of groundwater across the IGB alluvial 90 aquifer based entirely on in situ measurements. We use a statistical analysis of multiyear 91 groundwater-level records from 3652 water-wells and a compilation and interpretation of existing 92 high resolution spatial datasets and studies within Pakistan, India, Nepal and Bangladesh to assess: 93 (1) groundwater-level variations; (2) groundwater salinity; and (3) We find that the water-table within the IGB alluvial aquifer is typically shallow (< 5 m below ground 98 surface) and the long-term trend is relatively stable throughout much of the basin, with some 99 important exceptions. In areas of high groundwater abstraction in northwest India and the Punjab in 100 Pakistan ( Figure 2) the water-table can be >20 m bgl and in some locations is falling at rates of > 1 101 m/a (Figure 3). In areas of equivalent high irrigation abstraction within Bangladesh, the average 102 water-table remains shallow (<5 m bgl) due to greater direct recharge and high capacity for induced 103 recharge. Groundwater levels are deep and falling beneath many urban areas, and particularly in 104 large groundwater dependant cities such as Lahore, Dhaka and Delhi [23]. Shallow and rising water-105 tables are found in the Lower Indus, parts of the lower Bengal basin and in places throughout the 106 IGB aqui...
Groundwater is the world's largest accessible store of fresh water and supplies 36% of the world's drinking water and ~42% of the water used for irrigation 1 . Groundwater is the only reliable source of fresh water in many semi-arid and arid regions where surface waters are seasonally or perennially absent 9 . The long-term viability of groundwater resources as well as the ecosystems and livelihoods that they sustain, depends on replenishment of groundwater by recharge. Over the past 50 years, groundwater depletion has been estimated and observed in several aquifers throughout the tropics and sub-tropics [10][11][12][13] . Such depletion not only threatens ecosystem function and the livelihoods of groundwater-dependent communities in some of the world's poorest regions but is also estimated to contribute to sea-level rise 12,13 . A conceptual understanding of the relationship between rainfall and recharge is fundamental to the development of robust estimates and projections of not only groundwater recharge and depletion but of all components of the terrestrial water balance under changing climates and increasing freshwater demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.