Raw cows' milk naturally infected with Mycobacterium paratuberculosis was pasteurized with an APV HXP commercial-scale pasteurizer (capacity 2,000 liters/h) on 12 separate occasions. On each processing occasion, milk was subjected to four different pasteurization treatments, viz., 73°C for 15 s or 25 s with and without prior homogenization (2,500 lb/in 2 in two stages), in an APV Manton Gaulin KF6 homogenizer. Raw and pasteurized milk samples were tested for M. paratuberculosis by immunomagnetic separation (IMS)-PCR (to detect the presence of bacteria) and culture after decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h (to confirm bacterial viability). On 10 of the 12 processing occasions, M. paratuberculosis was detectable by IMS-PCR, culture, or both in either raw or pasteurized milk. Overall, viable M. paratuberculosis was cultured from 4 (6.7%) of 60 raw and 10 (6.9%) of 144 pasteurized milk samples. On one processing day, in particular, M. paratuberculosis appeared to have been present in greater abundance in the source raw milk (evidenced by more culture positives and stronger PCR signals), and on this occasion, surviving M. paratuberculosis bacteria were isolated from milk processed by all four heat treatments, i.e., 73°C for 15 and 25 s with and without prior homogenization. On one other occasion, surviving M. paratuberculosis bacteria were isolated from an unhomogenized milk sample that had been heat treated at 73°C for 25 s. Results suggested that homogenization increases the lethality of subsequent heat treatment to some extent with respect to M. paratuberculosis, but the extended 25-s holding time at 73°C was found to be no more effective at killing M. paratuberculosis than the standard 15-s holding time. This study provides clear evidence that M. paratuberculosis bacteria in naturally infected milk are capable of surviving commercial high-temperature, short-time pasteurization if they are present in raw milk in sufficient numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.