Competing successfully against an intelligent adversary requires the ability to mentalize an opponent's state of mind to anticipate his/her future behavior. Although much is known about what brain regions are activated during mentalizing, the question of how this function is implemented has received little attention to date. Here we formulated a computational model describing the capacity to mentalize in games. We scanned human subjects with functional MRI while they participated in a simple two-player strategy game and correlated our model against the functional MRI data. Different model components captured activity in distinct parts of the mentalizing network. While medial prefrontal cortex tracked an individual's expectations given the degree of modelpredicted influence, posterior superior temporal sulcus was found to correspond to an influence update signal, capturing the difference between expected and actual influence exerted. These results suggest dissociable contributions of different parts of the mentalizing network to the computations underlying higher-order strategizing in humans.computational modeling ͉ decision making ͉ functional MRI ͉ neuroeconomics
Many real-life decision-making problems incorporate higher-order structure, involving interdependencies between different stimuli, actions, and subsequent rewards. It is not known whether brain regions implicated in decision making, such as the ventromedial prefrontal cortex (vmPFC), use a stored model of the task structure to guide choice (model-based decision making) or merely learn action or state values without assuming higher-order structure as in standard reinforcement learning. To discriminate between these possibilities, we scanned human subjects with functional magnetic resonance imaging while they performed a simple decision-making task with higher-order structure, probabilistic reversal learning. We found that neural activity in a key decision-making region, the vmPFC, was more consistent with a computational model that exploits higher-order structure than with simple reinforcement learning. These results suggest that brain regions, such as the vmPFC, use an abstract model of task structure to guide behavioral choice, computations that may underlie the human capacity for complex social interactions and abstract strategizing.
Considerable evidence has emerged to implicate ventromedial prefrontal cortex in encoding expectations of future reward during value-based decision making. However, the nature of the learned associations upon which such representations depend is much less clear. Here, we aimed to determine whether expected reward representations in this region could be driven by action-outcome associations, rather than being dependent on the associative value assigned to particular discriminative stimuli. Subjects were scanned with functional magnetic resonance imaging while performing 2 variants of a simple reward-related decision task. In one version, subjects made choices between 2 different physical motor responses in the absence of discriminative stimuli, whereas in the other version, subjects chose between 2 different stimuli that were randomly assigned to different responses on a trial-by-trial basis. Using an extension of a reinforcement learning algorithm, we found activity in ventromedial prefrontal cortex tracked expected future reward during the action-based task as well as during the stimulus-based task, indicating that value representations in this region can be driven by action-outcome associations. These findings suggest that ventromedial prefrontal cortex may play a role in encoding the value of chosen actions irrespective of whether those actions denote physical motor responses or more abstract decision options.
In model-based functional magnetic resonance imaging (fMRI), signals derived from a computational model for a specific cognitive process are correlated against fMRI data from subjects performing a relevant task to determine brain regions showing a response profile consistent with that model. A key advantage of this technique over more conventional neuroimaging approaches is that model-based fMRI can provide insights into how a particular cognitive process is implemented in a specific brain area as opposed to merely identifying where a particular process is located. This review will briefly summarize the approach of model-based fMRI, with reference to the field of reward learning and decision making, where computational models have been used to probe the neural mechanisms underlying learning of reward associations, modifying action choice to obtain reward, as well as in encoding expected value signals that reflect the abstract structure of a decision problem. Finally, some of the limitations of this approach will be discussed.
Although previous studies have implicated a diverse set of brain regions in reward-related decision making, it is not yet known which of these regions contain information that directly reflects a decision. Here, we measured brain activity using functional MRI in a group of subjects while they performed a simple reward-based decision-making task: probabilistic reversal-learning. We recorded brain activity from nine distinct regions of interest previously implicated in decision making and separated out local spatially distributed signals in each region from global differences in signal. Using a multivariate analysis approach, we determined the extent to which global and local signals could be used to decode subjects' subsequent behavioral choice, based on their brain activity on the preceding trial. We found that subjects' decisions could be decoded to a high level of accuracy on the basis of both local and global signals even before they were required to make a choice, and even before they knew which physical action would be required. Furthermore, the combined signals from three specific brain areas (anterior cingulate cortex, medial prefrontal cortex, and ventral striatum) were found to provide all of the information sufficient to decode subjects' decisions out of all of the regions we studied. These findings implicate a specific network of regions in encoding information relevant to subsequent behavioral choice.anterior cingulate cortex ͉ distributed encoding ͉ prefrontal cortex
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.