Background
The airway epithelium generates reactive oxygen species (ROS) as a first line of defense. Dual oxidases (DUOX1 and DUOX2) are the H2O2-producing isoforms of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family in the airway epithelium. The purpose of this study was to explore the molecular expression, function, and regulation of DUOXs in chronic rhinosinusitis (CRS).
Methods
Human nasal tissue samples and nasal secretions were collected from 3 groups of patients undergoing sinus surgery (normal, n = 7; CRS with polyposis [CRSwP], n = 6; CRS without polyposis [CRSsP], n = 6). Nasal secretions were studied for cytokine and H2O2 content. Tissue samples were used to determine DUOX mRNA and protein expression.
Results
DUOX1 mRNA level (80.7 ± 60.5) was significantly increased in CRSwP compared to normal (2.7 ± 1.2) and CRSsP (2.3 ± 0.5, p = 0.042). DUOX2 mRNA levels were increased in both CRSwP (18.6 ± 9.9) and CRSsP (4.0 ± 1.3) compared to normal (1.1 ± 0.3; p = 0.008). DUOX protein was found in the apical portion of the nasal epithelium and protein expression was increased in CRSwP and CRSsP. H2O2 production was significantly higher in CRSwP (160.9 ± 59.4 nM) and CRSsP (81.7 ± 5.6 nM) compared to normal (53.5 ± 11.5 nM, p = 0.032). H2O2 content of nasal secretions correlated tightly with DUOX expression (p < 0.001). Cytokines (eotaxin, monokine-induced by interferon γ [MIG], tumor necrosis factor [TNF]-α, interleukin [IL]-8) showed significantly higher levels in nasal secretions from CRSwP compared to normal (p < 0.05). Levels of eotaxin, MIG, and TNF-α correlated closely with DUOX expression.
Conclusion
DUOX1 and DUOX2 were identified as factors upregulated in CRS. Close correlations between DUOX expression and H2O2 release, and correlation between key inflammatory cytokines and DUOX expression, indicate DUOX in the inflammatory response in CRS.
Using the NGFR and ICAM1 cellular coordinates, we have identified a promising population of native human nasal epithelial progenitor cells that require more formal investigation for their role in upper airway regeneration.
Background Topical corticosteroids are currently employed to reduce established airway inflammation; their prophylactic use might help limit cellular damage against harmful stimuli. Objectives To determine the effects of a prophylactic topical application of budesonide (BD) on an in vivo nasal epithelium injury model induced by trichloroacetic acid (TCA). Methods C57Bl/6 mice were exposed to intranasal TCA topical application. Three groups received topical intranasal BD, saline solution, or no intervention prior to a single topical exposure to TCA. Controls were not exposed to TCA. Whole nasal cavity coronal sections were analyzed at 1, 3, and 6 days postinjury at tissue and cellular levels using histopathological analysis, immunofluorescent staining, and fresh tissue RNA microarray analysis. Results Prophylactic topical corticosteroid exposure protected the nasal epithelium from acute damage, maintaining epithelial thickness and cell survival. Six days following TCA exposure, epithelial and cellular changes were less pronounced on the BD-treated group compared to all exposure groups. The microarray analysis was used to evaluate the gene transcripts in all treatment groups. Ciliary tip protein, Sentan, and submucosal protein S100b were identified as potential factors in epithelial airway protection; immunofluorescent staining corroborated their presence and location within the respiratory epithelium. Conclusion Topical corticosteroid treatment to the nasal epithelium can mitigate several of the early deleterious effects of acute epithelial damage in experimental airway injuries caused by TCA. These findings suggest a novel, direct cytoprotective effect of corticosteroids on the nasal epithelium, and the potential of expanding the use of prophylactic periprocedural topical corticosteroids for respiratory epithelial tissues.
Granulocyte subpopulations are focally affected within NPs by systemic steroid exposure, without notable granulocyte alterations in the surrounding regional tissues. These data provide direct insights into the cellular effects of routine prednisone exposure in CRS patients, and highlight a unique microenvironment present within NP lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.