Mesenchymal stem/stromal cells (MSCs) can regenerate tissues by direct differentiation or indirectly by stimulating angiogenesis, limiting inflammation, and recruiting tissue-specific progenitor cells. MSCs emerge and multiply in long-term cultures of total cells from the bone marrow or multiple other organs. Such a derivation in vitro is simple and convenient, hence popular, but has long precluded understanding of the native identity, tissue distribution, frequency, and natural role of MSCs, which have been defined and validated exclusively in terms of surface marker expression and developmental potential in culture into bone, cartilage, and fat. Such simple, widely accepted criteria uniformly typify MSCs, even though some differences in potential exist, depending on tissue sources. Combined immunohistochemistry, flow cytometry, and cell culture have allowed tracking the artifactual cultured mesenchymal stem/stromal cells back to perivascular anatomical regions. Presently, both pericytes enveloping microvessels and adventitial cells surrounding larger arteries and veins have been described as possible MSC forerunners. While such a vascular association would explain why MSCs have been isolated from virtually all tissues tested, the origin of the MSCs grown from umbilical cord blood remains unknown. In fact, most aspects of the biology of perivascular MSCs are still obscure, from the emergence of these cells in the embryo to the molecular control of their activity in adult tissues. Such dark areas have not compromised intents to use these cells in clinical settings though, in which purified perivascular cells already exhibit decisive advantages over conventional MSCs, including purity, thorough characterization and, principally, total independence from in vitro culture. A growing body of experimental data is currently paving the way to the medical usage of autologous sorted perivascular cells for indications in which MSCs have been previously contemplated or actually used, such as bone regeneration and cardiovascular tissue repair.
Adipose tissue is an ideal mesenchymal stem cell (MSC) source, as it is dispensable and accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which has disadvantages for tissue regeneration. In the present study, we prospectively purified human perivascular stem cells (PSCs) from n ؍ 60 samples of human lipoaspirate and documented their frequency, viability, and variation with patient demographics. PSCs are a fluorescence-activated cell sorting-sorted population composed of pericytes (CD45−, CD146؉, CD34−) and adventitial cells (CD45−, CD146−, CD34؉), each of which we have previously reported to have properties of MSCs. Here, we found that PSCs make up, on average, 43.2% of SVF from human lipoaspirate (19.5% pericytes and 23.8% adventitial cells). These numbers were minimally changed by age, gender, or body mass index of the patient or by length of refrigerated storage time between liposuction and processing. In a previous publication, we observed that human PSCs (hPSCs) formed significantly more bone in vivo in comparison with unsorted human SVF (hSVF) in an intramuscular implantation model. We now extend this finding to a bone injury model, observing that purified hPSCs led to significantly greater healing of mouse critical-size calvarial defects than hSVF (60.9% healing as opposed to 15.4% healing at 2 weeks postoperative by microcomputed tomography analysis). These studies suggest that adipose-derived hPSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, hPSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:673-684
Ectopic bone formation is a unique biologic entity--distinct from other areas of skeletal biology. Animal research models of ectopic bone formation most often employ rodent models and have unique advantages over orthotopic (bone) environments, including a relative lack of bone cytokine stimulation and cell-to-cell interaction with endogenous (host) bone-forming cells. This allows for relatively controlled in vivo experimental bone formation. A wide variety of ectopic locations have been used for experimentation, including subcutaneous, intramuscular, and kidney capsule transplantation. The method, benefits and detractions of each method are summarized in the following review. Briefly, subcutaneous implantation is the simplest method. However, the most pertinent concern is the relative paucity of bone formation in comparison to other models. Intramuscular implantation is also widely used and relatively simple, however intramuscular implants are exposed to skeletal muscle satellite progenitor cells. Thus, distinguishing host from donor osteogenesis becomes challenging without cell-tracking studies. The kidney capsule (perirenal or renal capsule) method is less widely used and more technically challenging. It allows for supraphysiologic blood and nutrient resource, promoting robust bone growth. In summary, ectopic bone models are extremely useful in the evaluation of bone-forming stem cells, new osteoinductive biomaterials, and growth factors; an appropriate choice of model, however, will greatly increase experimental success.
Background Glomus tumors are relatively uncommon subcentimeteric benign perivascular neoplasms usually located on the fingers. With their blue-red color and common subungual location, they are commonly confused for vascular or melanocytic lesions. To date there is no comprehensive review of an institutional experience with glomus tumors. Methods A 14-year retrospective review of all cases within University of California, Los Angeles, with either a clinical or pathological diagnosis of glomus tumor was performed. Data obtained included demographic information, tumor description, pathological diagnoses, immunohistochemical studies, radiographic and treatment information, and clinical course. Rates of concordance between clinical and pathological diagnoses and an evaluation of overlap with other entities were assessed. Results Clinical diagnosis of glomus tumor showed concordance with a histopathological diagnosis (45.4% of cases). The most common alternate clinical diagnoses included lipoma, cyst, or angioma. A pathological diagnosis of glomus tumor was most common in the fourth to seventh decades of life. The most common presentation was a subcentimeter lesion on the digit. Deep-seated tumors had a strikingly increased risk for malignancy (33%). Radiological studies were not relied on frequently (18.2% of cases). Immunohistochemical analysis showed diffuse αSMA and MSA expression in nearly all cases (99% and 95%, respectively), with focal to diffuse CD34 immunostaining in 32% of cases. Discussion Our study illustrates trends in the clinical versus pathologic diagnoses of glomus tumor, common competing diagnoses, a difference in demographics than is commonly reported (older age groups most commonly affected), and important differences in the use adjunctive diagnostic tools including radiology and immunohistochemistry.
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.