We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.
Summary The development of more reactive, general, easily accessible, and readily available Pd(II)–NHC precatalysts remains a key challenge in homogeneous catalysis. In this study, we establish air-stable NHC–Pd(II) chloro-dimers, [Pd(NHC)(μ-Cl)Cl] 2 , as the most reactive Pd(II)–NHC catalysts developed to date. Most crucially, compared with [Pd(NHC)(allyl)Cl] complexes, replacement of the allyl throw-away ligand with chloride allows for a more facile activation step, while effectively preventing the formation of off-cycle [Pd 2 (μ-allyl)(μ-Cl)(NHC) 2 ] products. The utility is demonstrated via broad compatibility with amide cross-coupling, Suzuki cross-coupling, and the direct, late-stage functionalization of pharmaceuticals. Computational studies provide key insight into the NHC–Pd(II) chloro-dimer activation pathway. A facile synthesis of NHC–Pd(II) chloro-dimers in one-pot from NHC salts is reported. Considering the tremendous utility of Pd-catalyzed cross-coupling reactions and the overwhelming success of [Pd(NHC)(allyl)Cl] precatalysts, we believe that NHC–Pd(II) chloro-dimers, [Pd(NHC)(μ-Cl)Cl] 2 , should be considered as go-to precatalysts of choice in cross-coupling processes.
Natural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo , six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki–Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.
The next frontier in drug discovery could be the semi-synthesis of non-natural, xenobiotic compounds combining both natural product biosynthesis and synthetic chemistry. However, the required tools and underlying engineering principles are yet to be fully understood. One way to investigate non-natural product biosynthesis is to probe the substrate promiscuity of a clinically relevant biosynthesis pathway. Violacein is a bisindole compound produced by the VioABCDE biosynthesis pathway using L-tryptophan as the starting substrate. Previous studies have shown that violacein exhibits antimicrobial properties, and synthetic analogues of violacein might give rise to new targets for therapeutic development to combat antimicrobial resistance. By adding seven types of tryptophan analogues available commercially, 62 new violacein or deoxyviolacein analogues were generated with a synthetic violacein biosynthesis pathway expressed in Escherichia coli, demonstrating the promiscuity of violacein biosynthesis enzymes. Growth inhibition assays against Bacillus subtilis, a Gram-positive bacterium, were carried out to measure growth inhibitory activity of violacein analogues compared to violacein. In addition, we show that four new 7-chloro analogues of violacein or deoxyviolacein can be generated in vivo by combining the rebeccamycin and violacein biosynthesis pathways and purified 7-chloro violacein was found to have similar growth inhibitory activity compared to violacein. Structural studies of VioA revealed active site residues that are important for catalytic activity, and further pathway recombination with VioA homologues in related bisindole pathways may lead to more efficient enzymes that would accept tryptophan analogues more readily.
Allosteric effect can modulate the biological activity of a protein. Thus, the discovery of new allosteric sites is very attractive for designing new modulators or inhibitors. Here, we propose an innovative way to identify allosteric sites, based on crystallization additives (CA), used to stabilize proteins during the crystallization process. Density and clustering analyses of CA, applied on protein kinase and nuclear receptor families, revealed that CA are not randomly distributed around protein structures, but they tend to aggregate near common sites. All orthosteric and allosteric cavities described in the literature are retrieved from the analysis of CA distribution. In addition, new sites were identified, which could be associated to putative allosteric sites. We proposed an efficient and easy way to use the structural information of CA to identify allosteric sites. This method could assist medicinal chemists for the design of new allosteric compounds targeting cavities of new drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.