SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.
Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi ( Bb ), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts.
Host association– the selective adaptation of pathogens to specific host species – evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi (Bb), the main LD pathogen in North America – a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens’ ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association.IMPORTANCEHost association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD) causing agent, B. burgdorferi (Bb), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC, with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.