The lipoxygenase metabolism of arachidonic acid occurs in specific blood cell types and epithelial tissues and is activated in inf lammation and tissue injury. In the course of studying lipoxygenase expression in human skin, we detected and characterized a previously unrecognized enzyme that at least partly accounts for the 15S-lipoxygenase metabolism of arachidonic acid in certain epithelial tissues. The cDNA was cloned from human hair roots, and expression of the mRNA was detected also in prostate, lung, and cornea; an additional 16 human tissues, including peripheral blood leukocytes, were negative for the mRNA. The cDNA encodes a protein of 676 amino acids with a calculated molecular mass of 76 kDa. The amino acid sequence has approximately 40% identity to the known human 5S-, 12S-, and 15S-lipoxygenases. When expressed in HEK 293 cells, the newly discovered enzyme converts arachidonic acid exclusively to 15S-hydroperoxyeicosatetraenoic acid, while linoleic acid is less well metabolized. These features contrast with the previously reported 15S-lipoxygenase, which oxygenates arachidonic acid mainly at C-15, but also partly at C-12, and for which linoleic acid is an excellent substrate. The different catalytic activities and tissue distribution suggest a distinct function for the new enzyme compared with the previously reported human 15S-lipoxygenase.
The synthesis of both pro-inflammatory leukotrienes and anti-inflammatory lipoxins requires the enzyme 5-lipoxygenase (5-LOX). 5-LOX activity is short-lived, apparently in part due to an intrinsic instability of the enzyme. We identified a 5-LOX-specific destabilizing sequence that is involved in orienting the carboxy-terminus which binds the catalytic iron. Herein we report the crystal structure at 2.4 Å resolution of human 5-LOX stabilized by replacement of this sequence.
Lipoxygenases (LOX) and cyclooxygenases (COX) react an achiral polyunsaturated fatty acid with oxygen to form a chiral peroxide product of high regio- and stereochemical purity. Both enzymes employ free radical chemistry reminiscent of hydrocarbon autoxidation but execute efficient control during catalysis to form a specific product over the multitude of isomers found in the nonenzymatic reaction. Exactly how both dioxygenases achieve this positional and stereo control is far from clear. We present four mechanistic models, not mutually exclusive, that could account for the specific reactions of molecular oxygen with a fatty acid in the LOX or COX active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.