A decade ago, the ability of nasal tissues to metabolize inhalants was only dimly suspected. Since then, the metabolic capacities of nasal cavity tissues has been extensively investigated in mammals, including man. Aldehyde dehydrogenases, cytochrome P-450-dependent monooxygenases, rhodanese, glutathione transferases, epoxide hydrolases, flavin-containing monooxygenases, and carboxyl esterases have all been reported to occur in substantial amounts in the nasal cavity. The contributions of these enzyme activities to the induction of toxic effects from inhalants such as benzo-a-pyrene, acetaminophen, formaldehyde, cocaine, dimethylnitrosamine, ferrocene, and 3-trifluoromethylpyridine have been the subject of dozens of reports. In addition, the influence of these enzyme activities on olfaction and their contribution to vapor uptake is beginning to receive attention from the research community. Research in the next decade promises to provide answers to the many still unanswered questions posed by the presence of the substantial xenobiotic metabolizing capacity of the nasal cavity.
1,3-Butadiene (BD) is used in the manufacture of styrene-BD and polybutadiene rubber. Differences seen in chronic toxicity studies in the susceptibility of B6C3F1 mice and Sprague-Dawley rats to BD raise the question of how to use the rodent toxicology data to predict the health risk of BD in humans. The purpose of this study was to determine if there are species differences in the metabolism of BD to urinary metabolites that might help to explain the differences in the toxicity of BD. The major urinary metabolites of BD in F344/N rats, Sprague-Dawley rats, B6C3F1 mice, Syrian hamsters, and cynomolgus monkeys were identified as 1,2-dihydroxy-4-(N-acetylcysteinyl)-butane (I) and the N-acetylcysteine conjugate of BD monoxide [1-hydroxy-2-(N-acetylcysteinyl)-3-butene] (II). These mercapturic acids are formed by addition of glutathione at either the double bond (I) or the epoxide (II) respectively. When exposed to approximately 8000 p.p.m. of BD for 2 h, the mice excreted 3-4 times as much metabolite II as I, the hamster and the rats produced approximately 1.5 times as much metabolite II as I, while the monkeys produced primarily metabolite I. The ratio of formation of metabolite I to the total formation of the two mercapturic acids correlated well with the known hepatic epoxide hydrolase activity in the different species. These data suggest that (i) the availability of the monoepoxide for conjugation with glutathione is highest in the mouse, followed by the hamster and the rat, and is lowest in the monkey; and (ii) the epoxide availability is inversely related to the hepatic activity of epoxide hydrolase, the enzyme that removes the epoxide by hydrolysis. The ratio of the two mercapturic acids in human urine following BD exposure may indicate the pathways of BD metabolism in humans and may aid in the determination of the most appropriate animal model for BD toxicity.
1,3-Butadiene (BD), a chemical used extensively in the production of styrene-butadiene rubber, is carcinogenic in Sprague-Dawley rats and B6C3F1 mice. Chronic inhalation studies revealed profound species differences in the potency and organ-site specificity of BD carcinogenesis between rats and mice. BD is a potent carcinogen in mice and a weak carcinogen in rats. Previous studies from our laboratory and others have shown marked differences between rats and mice in the metabolism of BD, which may account for species differences in carcinogenicity. The purpose of the present study was to examine the production and disposition of two mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2), in blood and other tissues of rats and mice during and following inhalation exposures to a target concentration of 62.5 p.p.m. BD. BDO was increased above background in blood, bone marrow, heart, lung, fat, spleen and thymus tissues of mice after 2 h and 4 h exposures to BD. In rats, levels of BDO were increased in blood, fat, spleen and thymus tissues. No increases in BDO were observed in rat lungs. BDO2, the more mutagenic of the two epoxides, was increased in the blood of rats and mice at 2 and 4 h after initiation of exposure to BD. In mice, BDO2 was detected in all tissues examined immediately following the 4 h exposure. This metabolite was detected in heart, lung, fat, spleen and thymus of rats, but at levels 40- to 160-fold lower than those seen in mice. Immediately after the 4 h exposure, blood levels of BDO2 were 204 +/- 15 pmol/g for mice but were 41-fold lower for rats. In the sensitive mouse target organs, heart and lungs, levels of BDO2 exceeded BDO levels immediately after the exposure. This study shows that the levels of BD epoxides are markedly greater in the mouse BD target organs. The high concentrations of BDO2 in these organs suggest that this compound may be particularly important in BD-induced carcinogenesis. Thus, although BD is oxidatively metabolized by similar metabolic pathways in rats and mice, the substantial quantitative differences in tissue levels of mutagenic epoxides between species may be responsible for the increased sensitivity of mice to BD-induced carcinogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.