We present here the synthesis and the structure activity relationship of a series of organometallic complexes of the steroidal androgens testosterone and dihydrotestosterone (DHT) substituted at the C-17 position of the steroid skeleton with an ethynyl substituent grafted with various sandwich or semisandwich organometallic units [ferrocenyl, (η 5 -C 5 H 4 )-Re(CO) 3 , (η 5 -C 5 H 4 )-Mn(CO) 3 , (η 6 -C 6 H 5 )-Cr(CO) 3 ] and of 3 -androstanediol substituted at C-16 and C-17 respectively by a ferrocenyl vinyl and a ferrocenyl ethynyl unit. In contrast to the estradiol series, there are currently very few examples of organometallic steroidal androgens in the literature. The ethynyltestosterone derivatives were obtained via a Stille coupling reaction between the appropriate iodo-organometallics and 17 -ethynyltestosterone stannyl derivatives. The ethynyl-DHT derivatives were synthesized by addition of the corresponding acetylide to the C-17 carbonyl of the steroid. The crystal structures of two ferrocenyl and one rhenium complexes were determined by X-ray diffraction and had confirmed that the organometallic moiety points toward the R face of the steroid skeleton. All the complexes retain a modest affinity for the androgen receptor. The ferrocenyl derivatives of ethynyl testosterone, 8 and 12, show a strong antiproliferative effect on the hormoneindependent prostate cancer cells PC-3 with IC 50 values of respectively 4.7 and 8.3 µM. These values are very similar, for 12, or slightly better, for 8, than those found recently for the most active ferrocenyl derivative of the nonsteroidal antiandrogen nilutamide (IC 50 value of 5.4 µM). The ferrocenyl complexes described here are the first examples of organometallic steroidal androgens possessing a strong antiproliferative activity on prostate cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.