Systems whose arrival or service rates fluctuate over time are very common, but are still not well understood analytically. Stationary formulas are poor predictors of systems with fluctuating load. When the arrival and service processes fluctuate in a Markovian manner, computational methods, such as Matrix-analytic and spectral analysis have been instrumental in the numerical evaluation of quantities like mean response time. However, such computational tools provide only limited insight into the functional behavior of the system with respect to its primitive input parameters: the arrival rates, service rates, and rate of fluctuation.For example, the shape of the function that maps rate of fluctuation to mean response time is not well understood, even for an M/M/1 system. Is this function increasing, decreasing, monotonic? How is its shape affected by the primitive input parameters? Is there a simple closed-form approximation for the shape of this curve? Turning to user experience: How is the performance experienced by a user arriving into a "high load" period different from that of a user arriving into a "low load" period, or simply a random user. Are there stochastic relations between these? In this paper, we provide the first answers to these very fundamental questions.
Systems whose arrival or service rates fluctuate over time are very common, but are still not well understood analytically. Stationary formulas are poor predictors of systems with fluctuating load. When the arrival and service processes fluctuate in a Markovian manner, computational methods, such as Matrix-analytic and spectral analysis have been instrumental in the numerical evaluation of quantities like mean response time. However, such computational tools provide only limited insight into the functional behavior of the system with respect to its primitive input parameters: the arrival rates, service rates, and rate of fluctuation.For example, the shape of the function that maps rate of fluctuation to mean response time is not well understood, even for an M/M/1 system. Is this function increasing, decreasing, monotonic? How is its shape affected by the primitive input parameters? Is there a simple closed-form approximation for the shape of this curve? Turning to user experience: How is the performance experienced by a user arriving into a "high load" period different from that of a user arriving into a "low load" period, or simply a random user. Are there stochastic relations between these? In this paper, we provide the first answers to these very fundamental questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.