In this research, flexural properties of mill-run, in-grade red and white oak lumber from a single mill and commercially available laminated hardwood composite were evaluated. Structurally graded green (wet) freshly sawn red and white oak 5 by 10-cm (2 by 4-in) nominal lumber as well as glue-laminated hardwood composite billets were tested in bending and their modulus of rupture (MOR) and modulus of elasticity (MOE) properties were developed. It is well documented that MOR and MOE are two major indicators to evaluate flexural strength of wood lumbers. From these data, summary statistics, design values, and mean separations were calculated and reported. Overall, the red and white oak lumber performed similarly to structural No. 2 grade material. The hardwood composite billets were highly uniform. Each of the three materials demonstrated a reasonably good relationship between MOE and MOR, thereby suggesting that MOE could be used as a selection criterion for strength in a commercial use situation.
The wear resistance and Janka hardness of five United States hardwood species were evaluated for potential use in bridge decking and truck flooring. The species tested include ash (Fraxinus sp.), hickory (Carya sp.), red oak (Quercus sp.), sweetgum (Liquidambar styraciflua), and white oak (Quercus sp.). The specimens were prepared with the sizes of 1 by 2 by 4 inches (2.54 by 5.08 by 10.16cm) for abrasion test and 1 by 2 by 6 inches (2.54 by 5.08 by 15.24 cm) for Janka hardness testing. The specimens were cut from 30 individual parent boards of random width with clear sections for each species. The abrasion and Janka hardness tests were performed according to the American Society of Testing and Materials standards. All wear and hardness data were statistically analyzed by 1-way analysis of variance. The results of this study demonstrated that sweetgum with the lowest density had the greatest amount of thicknesses loss and thus lowest wear resistance. White oak was found to have the least thicknesses loss, thus highest wear resistance among the hardwood species tested. Hickory, with the highest density, had the highest hardness among the hardwood species tested, but it had relatively lower wear resistance comparing to ash, red oak, and white oak.
The effect of thermomechanical densification treatment on the abrasion resistance of five hardwood species were investigated in this study. The species tested include ash (Fraxinus sp.), hickory (Carya sp.), red oak (Quercus sp.), sweetgum (Liquidambar styraciflua), and white oak (Quercus sp.). The abrasion test was performed according to the American Society of Testing and Materials standards. Ten specimens from each species were initially tested for abrasion resistance, and those specimens were then put through a thermomechanical densification process. The densification process consisted of bringing the heated platen up to a temperature of 176°C (350°F) on one surface and pressing the specimens at 6.9 MPa (1,000 Psi) for a period of 5 minutes. The densified specimens were then subject to the same abrasion testing procedure. All data were statistically analyzed by two-way analysis of variance (ANOVA) with the procedure of general linear mixed models. The results of this study indicated that densified hickory had the highest abrasion resistance among the five hardwood species tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.