CZP1, a locus for autosomal dominant "zonular pulverulent" cataract, previously had been linked with the Duffy blood-group-antigen locus on chromosome 1q. Here we report genetic refinement of the CZP1 locus and show that the underlying mutation is present in GJA8, the gene for connexin50. To map the CZP1 locus we performed linkage analysis using microsatellite markers on two distantly related branches of the original Ev. pedigree, which now spans eight generations. Significantly positive two-point LOD score (Z) values were obtained for markers D1S2669 (maximum Z [Zmax] = 4.52; maximum recombination frequency [thetamax] = 0) and D1S514 (Zmax = 4.48; thetamax = 0). Multipoint analysis gave Zmax = 5.22 (thetamax = 0) at marker D1S2669. Haplotyping indicated that CZP1 probably lies in the genetic interval D1S2746-(20.6 cM)-D1S2771. Sequence analysis of the entire protein-coding region of the GJA8 gene from the pedigree detected a C-->T transition in codon 88, which introduced a novel MnlI restriction-enzyme site that also cosegregated with the cataract. This missense mutation is predicted to result in the nonconservative substitution of serine for a phylogenetically conserved proline (P88S). These studies provide the first direct evidence that GJA8 plays a vital role in the maintenance of human lens transparency and identify the genetic defect believed to underlie the first inherited disease to be linked to a human autosome.
In either the lens or oocytes, Ca(2+) and H(+) appear to affect the same mechanism, probably either the open probability of the water channel, or open-channel permeability. The difference between calcium's effects in lens versus oocytes was remarkable and is not understood. However, in the lens, Ca(2+) and H(+) are both increased in inner fiber cells, and so in the physiologically relevant environment, both may act to increase the water permeability of AQP0.
The major intrinsic protein (MIP) of the vertebrate eye lens is the first identified member of a sequence-related family of cell-membrane proteins that appears to have evolved by gene duplication. Several members of the MIP family transport water (aquaporins), glycerol and other small molecules in microbial, plant and animal cells. Mutations in two aquaporin homologues of MIP underlie an autosomal recessive form of nephrogenic diabetes insipidus and absence of the Colton blood group antigens in humans, whereas, mutation of a third MIP-like gene underlies 'big brain' development in Drosophila. Here we show that distinct mutations in the murine Mip gene underlie one form of autosomal dominant cataract in the mouse. The cataract Fraser mutation is a transposon-induced splicing error that substitutes a long terminal repeat sequence for the carboxy-terminus of MIP. The lens opacity mutation is an amino-acid substitution that inhibits targeting of MIP to the cell-membrane. These allelic cataract mutations provide the first direct evidence that MIP plays a crucial role in the development of a transparent eye lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.