Objective. To determine the cellular and matrix responses to experimental wounding of articular cartilage.Methods. Immature and mature bovine articular cartilage was used as an in vitro model system to study the cellular responses to cartilage wounding. Explant cultures were wounded centrally with a trephine and maintained for up to 10 days. TUNEL labeling together with ultrastructural analyses were used to assess the nature of the observed cell death. In vitro labeling with 3 H-thymidine was used to detect cell proliferation, and 2 antibodies (COL2-3/4M and BC-13) were used to detect changes in matrix turnover.Results. Cell death was observed as a response to wounding and was considered to be a combination of necrosis and apoptosis. In immature tissue, cell death was more pronounced, particularly in the articular surface region. Within the area of cell death, many cells that did not die subsequently underwent proliferation. The collagenous network showed evidence of denaturation in the area of the wound, but "aggrecanase" activity was not detected.Conclusion. There are 2 contrasting, but related, responses to cartilage wounding-apoptosis and proliferation. In order to improve cartilage repair, future studies need to elucidate the regulatory mechanisms that determine these responses.
In response to UK government policy mandating the construction of 'zero carbon' homes by 2016 there have been significant changes in the way dwellings are being designed and built. Recent years have seen a rapid uptake in the adoption of the German Passivhaus standard as a template for ultra-low energy and zero carbon buildings in the UK. Despite genuine motivations to mitigate climate change and fuel poverty there is a lack of research investigating the long-term performance of Passivhaus buildings in a rapidly changing UK climate. This paper sets out to investigate whether Passivhaus dwellings will be able to provide high standards of thermal comfort in the future or whether they are inherently vulnerable to overheating risks. Scenario modelling using probabilistic data derived from the UKCP09 weather generator (WG) in conjunction with dynamic simulation and global sensitivity analysis techniques are used to assess the future performance of a range of typical Passivhaus dwellings relative to an identical Fabric Energy Efficiency Standard (FEES) compliant dwelling over its notional future lifespan. The emphasis of this study is to understand what impact climate change will pose to overheating risks for Passivhaus dwellings relative to the de facto (i.e. FEES) alternative, and which design factors play a dominant role in contributing to this risk. The results show that optimization of a small number of design inputs, including glazing ratios and external shading devices, can play a significant role in mitigating future overheating risks.
. The macromolecular structure of type X collagen in the matrices of primary cultures of chick hypertrophic chondrocytes was initially investigated using immunoelectron microscopy. Type X collagen was observed to assemble into a madike structure within the matrix elaborated by hypertrophic chondrocytes . The process of self assembly was investigated at the molecular level using purified chick type X collagen and rotary-shadowing EM . It was shown that under neutral conditions at 34°C, individual type X collagen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.