Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Ptenhy/+ > Pten+/− > Ptenhy/− (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation) > Pten prostate conditional knockout (Ptenpc) mutants. In addition, we have generated and comparatively analyzed two distinct Ptenpc mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27Kip1, mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.
BackgroundGenetic aberrations have been identified in nasopharyngeal carcinoma (NPC), however, the underlying mechanism remains elusive. There are increasing evidences that the apoptotic nuclease caspase-activated deoxyribonuclease (CAD) is one of the players leading to translocation in leukemia. Oxidative stress, which has been strongly implicated in carcinogenesis, is a potent apoptotic inducer. Most of the NPC etiological factors are known to induce oxidative stress. Although apoptosis is a cell death process, cells possess the potential to survive apoptosis upon DNA repair. Eventually, the surviving cells may carry rearranged chromosomes. We hypothesized that oxidative stress-induced apoptosis may cause chromosomal breaks mediated by CAD. Upon erroneous DNA repair, cells that survive apoptosis may harbor chromosomal rearrangements contributing to NPC pathogenesis. This study focused on the AF9 gene at 9p22, a common deletion region in NPC. We aimed to propose a possible model for molecular mechanism underlying the chromosomal rearrangements in NPC.ResultsIn the present study, we showed that hydrogen peroxide (H2O2) induced apoptosis in NPC (HK1) and normal nasopharyngeal epithelial (NP69) cells, as evaluated by flow cytometric analyses. Activity of caspases 3/7 was detected in H2O2-treated cells. This activity was inhibited by caspase inhibitor (CI). By nested inverse polymerase chain reaction (IPCR), we demonstrated that oxidative stress-induced apoptosis in HK1 and NP69 cells resulted in cleavages within the breakpoint cluster region (BCR) of the AF9 gene. The gene cleavage frequency detected in the H2O2-treated cells was found to be significantly higher than untreated control. We further found that treatment with CI, which indirectly inhibits CAD, significantly reduced the chromosomal breaks in H2O2-cotreated cells. Intriguingly, a few breakpoints were mapped within the AF9 region that was previously reported to translocate with the mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemia (ALL) patient.ConclusionsIn conclusion, our findings suggested that oxidative stress-induced apoptosis could be one of the mechanisms underlying the chromosomal rearrangements in NPC. CAD may play an important role in chromosomal cleavages mediated by oxidative stress-induced apoptosis. A potential model for oxidative stress-induced apoptosis mediating chromosomal rearrangements in NPC is proposed.
Nasopharyngeal carcinoma (NPC) arises from the mucosal epithelium of the nasopharynx and is constantly associated with Epstein–Barr virus type 1 (EBV‐1) infection. We carried out a genome‐wide association study (GWAS) of 575,247 autosomal SNPs in 184 NPC patients and 236 healthy controls of Malaysian Chinese ethnicity. Potential association signals were replicated in a separate cohort of 260 NPC patients and 245 healthy controls. We confirmed the association of HLA‐A to NPC with the strongest signal detected in rs3869062 (p = 1.73 × 10−9). HLA‐A fine mapping revealed associations in the amino acid variants as well as its corresponding SNPs in the antigen peptide binding groove (pHLA‐A‐aa‐site‐99 = 3.79 × 10−8, prs1136697 = 3.79 × 10−8) and T‐cell receptor binding site (pHLA‐A‐aa‐site‐145 = 1.41 × 10−4, prs1059520 = 1.41 × 10−4) of the HLA‐A. We also detected strong association signals in the 5′‐UTR region with predicted active promoter states (prs41545520 = 7.91 × 10−8). SNP rs41545520 is a potential binding site for repressor ATF3, with increased binding affinity for rs41545520‐G correlated with reduced HLA‐A expression. Multivariate logistic regression diminished the effects of HLA‐A amino acid variants and SNPs, indicating a correlation with the effects of HLA‐A*11:01, and to a lesser extent HLA‐A*02:07. We report the strong genetic influence of HLA‐A on NPC susceptibility in the Malaysian Chinese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.