Abstract. There are natural polynomial invariants of polytopes and lattice polytopes coming from enumerative combinatorics and Ehrhart theory, namely the h-and h * -polynomials, respectively. In this paper, we study their generalization to subdivisions and lattice subdivisions of polytopes. By abstracting constructions in mixed Hodge theory, we introduce multivariable polynomials which specialize to the h-, h * -polynomials. These polynomials, the mixed h-polynomial and the (refined) limit mixed h * -polynomial have rich symmetry, non-negativity, and unimodality properties, which both refine known properties of the classical polynomials, and reveal new structure. For example, we prove a lower bound theorem for a related invariant called the local h * -polynomial. We introduce our polynomials by developing a very general formalism for studying subdivisions of Eulerian posets that extends the work of Stanley, Brenti and Athanasiadis on local h-vectors. In particular, we prove a conjecture of Nill and Schepers, and answer a question of Athanasiadis.
We introduce the notion of a weighted δ-vector of a lattice polytope. Although the definition is motivated by motivic integration, we study weighted δ-vectors from a combinatorial perspective. We present a version of Ehrhart Reciprocity and prove a change of variables formula. We deduce a new geometric interpretation of the coefficients of the Ehrhart δ-vector. More specifically, they are sums of dimensions of orbifold cohomology groups of a toric stack.
For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write h(t)(We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for n ≥ n d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen-Macauley graded rings.
Abstract. For any lattice polytope P , we consider an associated polynomial δ P (t) and describe its decomposition into a sum of two polynomials satisfying certain symmetry conditions. As a consequence, we improve upon known inequalities satisfied by the coefficients of the Ehrhart δ-vector of a lattice polytope. We also provide combinatorial proofs of two results of Stanley that were previously established using techniques from commutative algebra. Finally, we give a necessary numerical criterion for the existence of a regular unimodular lattice triangulation of the boundary of a lattice polytope.
Motivated by representation theory and geometry, we introduce and develop an equivariant generalization of Ehrhart theory, the study of lattice points in dilations of lattice polytopes. We prove representation-theoretic analogues of numerous classical results, and give applications to the Ehrhart theory of rational polytopes and centrally symmetric polytopes. We also recover a character formula of Procesi, Dolgachev, Lunts and Stembridge for the action of a Weyl group on the cohomology of a toric variety associated to a root system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.