The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO 2 emissions targets and energy security. Increased hybridisation, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements.The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering >5% increased engine torque and up to 5% reduced fuel consumption. This method has the distinct advantage of providing performance and fuel economy improvements without significant changes to the structure of the engine, the combustion system or lubrication system. The Turbo-Discharging concept is introduced and analyzed. A combination of filling/emptying models and 1-D gas dynamic simulations were used to quantify the energy flows and identify optimum valve timings and turbomachine characteristics. 1-D gas dynamic simulation was then used to predict primary fuel economy benefits from TurboDischarging. Secondary benefits, such as extended knock limits are then discussed.
Turbo-discharging is a novel approach that can better utilize the energy recoverable by a turbine (or series of turbines) mounted in the exhaust flow of internal combustion engines. The recovery of blowdown pulse energy in isolation of displacement pulse energy allows the discharging (depressurization) of the exhaust system to reduce engine pumping work and improve engine fuel economy. This is a novel approach to air system optimization that has previously been studied for naturally aspirated engines. However, to be successful, turbo-discharging should be applicable to turbocharged engines, as downsizing is a promising direction for future powertrain systems. This study uses one-dimensional gas dynamics modelling to explore the effect of turbo-discharging on a turbocharged gasoline engine, particularly focusing on the interaction with the turbocharging system. The results show that the peak engine torque is increased at low to mid speeds with high speed torque slightly reduced due to restrictions in engine breathing with low lift exhaust valves. The engine peak torque as a function of speed with a larger turbocharger and turbo-discharging was comparable to that of the smaller turbocharger without turbo-discharging. Fuel economy improvements were evident over most part-load regions of the engine map, with peak values varying from 2 to 7% depending on the baseline engine air system strategy. Hot trapped residual mass was consistently reduced across a large fraction of the engine map, with the exception of high power conditions, where the valve pressure drop effect dominated. This is expected to enable spark advance and further fuel economy benefit. The results from this study are promising and show that the use of some of the available exhaust gas energy for turbo-discharging in preference to turbocharging can have a positive effect on both part-load and full-load engine performance. There remains significant potential for further optimization with application of variable valve actuation and turbocharger control systems (for example, variable geometry turbines).
Air systems are becoming increasingly complex and important for achieving IC engine performance and emission targets. Turbocharging is becoming increasingly prevalent enabling high power density engines, improved pumping work and improved fuel economy. Turbo-compounding allows turbine energy to contribute directly to crankshaft work with the aim of improving fuel economy. Turbodischarging allows turbine energy to be used to extract exhaust gases from the engine reducing pumping work and residual gas fraction while simultaneously increasing the amount of energy that can be recovered by the turbine(s). The optimum energy flow split between turbocharging, turbodischarging and turbocompounding has not previously been explored. This paper presents results of a study investigating the potential of tri-directional energy flow optimisation in comparison to uni-directional optimisation and bi-directional optimisation (i.e. using all three approaches, any two approaches or turbocharging alone). Thermodynamic analysis demonstrates the potential of bi-directional optimisation to achieve realistically 4% fuel consumption benefit for both turbocharging and discharging, and turbocharging and compounding on gasoline engines from pumping work alone. The peak benefit of the former occurs at a slightly lower engine torque than the latter as the energy cost of a unit fuel consumption benefit with turbodischarging increases with increasing levels of exhaust depressurisation. The Tri-directional optimisation shows a complex optimum position utilising all three systems and achieving a realistic peak benefit of 4.4% fuel consumption improvement. Optimisation on diesel engine architectures suggests significantly lower potential in the order of 1% benefit while lean burn gas engines showed up to 2.6% benefit. Sensitivity to compression and expansion efficiencies, exhaust manifold volume and system temperatures are presented. The future hybridisation of IC engine air systems may enable energy storage. This paper offers fundamental insight into the marginal fuel cost of capturing energy from the three systems and the marginal fuel value of using stored energy in the air system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.